
UREENCUP(U) NAVAL RESEARCH LAB WASHINGTON DC J TISNKOFF
17 DEC 8? RFOSR-TR-9S-9247 MIPR-87-9003

UNCASSIFIED F/O 21/2 ML

o ENOEMONEEI
I nlllffffllllff.



lim

-1 1111 1- 1 .8L

II

iill Ii 11111-

MICROCOPY RESOLUTION TEST CHARI
IR A, IANfrARFlq F%,

mr u- F F- r u m'- q"W a--, r u-W mrWF ,r , , q , r F r r - , , , N w " w w, w



AD-A192 431
Form Approved

........ ,)CUMENTATION PAGE OM No. 070 0a8

i. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 1 3. DISTRIBUTION/AVAILABILITY OF REPORT
. HApproved for public release;

b. DECLASSIFICATION/OWNGRA M ECTE distribution is unlimited.

PERFORMING ORGANIZATION REP, N5s. MONITORING ORGANIZATION REPORT NUMBER(S)

ai A'O-SK - -.TK. 8 8- 0 2 41
6a. NAME OF PERFORMING ORGANIZATON 6b.-EFICE SY, 7a. NAME OF MONITORING ORGANIZATION
Naval Research Laboratory applicable)
Lab for Computational Physics AFOSR/NA
6c. ADDRESS (Gty, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)
Building 97, Code 4410
Washington, DC 20375-5000 Building 410, Bolling AFB DC

20332-6448

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if a f c AFOSR MIPR 87-0003
AFOSR/ NA AIS 4P 700SC- ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Bidn 41,BligAFB DC PROGRAM IPROJECT TASK IWORK UNITBuilding41 ELEMENT NO. NO. NO ACCESSION .,O.20332-6448 61102F 2308 A2

11. TITLE (Include Security Classification)

(U) NUMERICAL SIMULATION OF FUEL DROPLET INTERACTIONS AND BREAKUP

!Z. PERSONAL AUTHOR(S)
ELAINE S. ORAN, DAVID E. FYFE

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
FINAL FROM 10/84 T09/87 17 December 1987

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on rever* if necenary and identify by block number)
FIELD GROUP SUB-GROUP Lagrangian Hydrodynamics, Two-phase Flow, Droplets,

Surface Tension, Incompressible Flows, Viscous Flows

ABSTRACT (Continue on reverse if neceuary and identify by block number)
The objective of the research in this program was to develop Langrangian methods on
triangular grids and apply these methods to the calculation of life-'history and dynamics
of fuel droplets. During the research period, major advances were made both in numerical
technology and in-the solution of problems so difficult that they have not been attempted
,before.

With respect to numberical technology, the two-dimensional code SPLISH was converted to a
VAX and then to a CRAY computer. New graphics systems were developed. Further testing
of the basic SPLISH hydrodynamic algorithms as well as the surface tension algorithm were
performed on internal gravity and capillary waves. A reorganization of the computer code)
itself is nearly complete. Thi-will make the code user-friendly and protable. Now it-
should be much easier to use, and therefore useable on many new kinds of problems.

First previously calculated flows of the distortion and breakup of a droplet due tod rferences in flow velocities between the droplet and the external media were recomuted

. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
F'2U.NCLAS$1FIEDAUNLIMITED M SAME AS RPT C3 TC SES/ Unclassified22a iaNAME OF RESPONSIBLE. TIfNDIVIDUA 22 J gL (Ir; , roe) I. 2J C%IFFE/ RMBOL

j2Julian M Tishkoff2'9S A

DO Form 1473, JUN 36 Prevous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified



Block 19 continued:

to verify the conversion. Then a number of calculations of droplet distortion
and breakup due to shear flows were made. Qualitative comparisons to experimental
results were made for the case when the droplet density and external fluid density were
nearly equal. Our calculation and the experiments by Mason and coworkers showed small .-'V
droplets torn off the large drop by the forces in the shear flow. A preliminary
calculation of a droplet-droplet collision shows .he distortion of droplets before they
collide. Forced-flow and inflow-outflow boundary conditions, needed to do quantitative
comparisons to experimental shear flows, were added to the model.

25:

& .. ...

"%,,

Ia

:1%,

I.k'

U~--



MW -V 14W V 1 A W4 X1 WX 6-' W L~ V .9 L J W?.

AFOSRTR- 88- 0247

NUMERICAL SIMULATION OF FUEL DROPLET

INTERACTIONS AND BREAKUP

/ Q0' '

Final Report to the ,

Air Force Office of Scientific Research
Dr. Julian Tishkoff Acceion For

NTSCRA&I ,

October 1, 1984 - September 30, 1987 DflCRTA 0
DrIC, TAB 0

D1i Iced 1

Principal Investigators: .. -AVj,' , JLsSAvef 1-i tior

Dr. Elaine S. Oran, phone: 202-767-2960 01- A 1 l:, -

Dr. David E. Fyfe, phone: 202-767-6583 I

Center for Reactive Flow and Dynamical Systems f I'

Laboratory for Computational Physics and Fluid Dynamics

Naval Research Laboratory, Code 4410

Washington, D.C., 20375

4.!

[l .4.

-4. kn~l~ l-i d-I'I: " a |rll";i bl ¢ , - '



SUMMARY

The objective of the research in this program was to develop Langrangian meth-

ods on triangular grids and apply these methods to the calculation of life-history and

dynamics of fuel droplets. During the research period, major advances were made both

in numerical technology and in the solution of problems so difficult that they have not

been attempted before.

With respect to numerical technology, the two-dimensional code SPLISH was con-

verted to a VAX and then to a CRAY computer. New graphics systems were developed.

Further testing of the basic SPLISH hydrodynamic algorithms as well as the surface

tension algorithm were performed on internal gravity and capillary waves. A reor-

ganization of the computer code itself is nearly complete. This will make the code

user-friendly and portable. Now it should be much easier to use, and therefore useable

on many new kinds of problems. ii

First, previously calculated flows of the distortion and breakup of a droplet due

to differences in flow velocities between the droplet and the external media were re-

computed to verify the conversion. Then a number of calculations of droplet distortion

and breakup due to shear flows were made. Qualitative comparisons to experimental

results were made for the case when the droplet density and external fluid density were

nearly equal. Our calculation and the experiments by Mason and coworkers showed

small droplets torn off the large drop by the forces in the shear flow. A preliminary

calculation of a droplet-droplet collision shows the distortion of droplets before they

collide. Forced-flow and inflow-outflow boundary conditions, needed to do quantitative

comparisons to experimental shear flows, were added to the model.

RESEARCH OBJECTIVES

Our major research objective was to develop models that could be used to give

the basic information needed for constructing appropriate models for dense sprays.

This is necessary because the limiting assumptions in current drop models imply that Id
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the predictions given by spray models in dense or high-pressure spray regimes are

not as accurate as they could be. Better drop models should be formulated using

information about collision and breakup rates relating to droplet size and velocity.

However such rate calculations are complicated by a rich variety of breakup, collision,

and coalescence modes that can occur in different pressure and velocity regimes. For

example, collisions can result in coalescence, elastic rebound, inelastic scattering with

increased drop deformation and oscillation or shattering into two or more droplets.

In addition, rapidly rotating or highly deformed drops may split into several drops,

shattering may occur at critical pressures, and hydrodynamic breakup of drops may

occur through several modes, including the bag breakup mode and droplet stripping

due to velocity gradients in the exterior flow field. Drop transport is directly affected

by these phenomena, and the presence of the drops affects the flow field in both the

mean flow and turbulent fluctuations.

Our approach was to develop the numerical technology associated with Lagrangian

methods on triangular grids to the point where it could be used to model the life-history

and dynamics of fuel droplets. In particular these methods would be used to determine

the conditions under which fuel droplets greatly distort and shatter, as would occur in

shear flows and droplet collisions.

WORK PERFORMED

The basis of the numerical method is a Lagrangian convection algorithm which

uses a triangular grid instead of a quadrilateral grid. In this method, the grid dy-

namically restructures itself according to preprogrammed criteria. In addition, new

triangles are added or old triangles are deleted to change the resolution, also according

to preprogrammed criteria. Triangle deletion allows the evolution of singly connected

regions to multiconnected regions, such as would occur when droplets break up. or the

evolution of multiconnected regions to singly connected regions, such as would occur

during droplet collision. Since the algorithm is Lagrangian, interfaces can be tracked

3
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%expicitly. Surface tension forces and viscous forces are included in addition to the

Lagrangian convection.

Conversion of the Triangular Langrangian Code SPLISH to Other Computers

In order to begin the work on this project, we had to move the code SPLISH

originally, written for the TI-ASC, first to a VAX and then to the CRAY computer.

In addition to converting the code, we had to develop different graphics packages for

the new computers. This was an extensive effort. Along the way, many of the original

calculations done under NASA support were redone and checked. In particular, the

droplet oscillation test calculations and one of the calculations of a flow past a droplet

were performed. These calculations are reported in detail in Appendix B, which is a

copy of the paper to be published in 1988 in the Journal of Computational Physics,

and to a lesser extent in Appendix A, which is paper number AIAA-87-0539 from the

AIAA Aerospace Sciences meeting of January, 1987.

Detailed Quantitative Tests of the Surface Tension Algorithm

Developing an accurrate algorithm to model the effects of interfacial surface tension

forces was much more difficult than we expected. We believe that this had never

been satisfactorily addressed in the literature. We tested many different approaches,

including the one we finally used, as documented in Appendix B. At first we used an

n = 2 normal mode droplet oscillation as a test of the accuracy of the surface tension

algorithm. The algorithm we finally used was accurate enough to allow us to compute

0 a number of periods of oscillation of the droplet. However, the convergence properties

of the algorithm were tested by comparing theoretical and computational calculations

of the properties of internal capillary waves. The result was that the surface tension

algorithm is first order in the mesh size, although the convection algorithm is second

order.

4
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There is one other result implied by our tests of the surface tension algorithm.

The algorithm works well when the surfaces are not too highly distorted. For highly

distorted surfaces the time and length scales associated with the surface tension phe-

nomenon are much smaller than the convective time and length scales. For droplet

breakup the physics of interest happens on the convective scales. For distorted surfaces

many more points and time steps are needed to compute the motion due to the surface

tension forces accurately, than are needed to compute the convective motion accurately.

The details of this work can be found in Appendix A. These results have been

presented at the American Physical Society Meeting of the Division of Fluid Dynam-

ics, November, 1985, and at the International Symposium on Computational Fluid

Dynamics, Tokyo, in August, 1985.

Calculations of Droplet Distortion and Breakup in Shear Flows

Calculations of silicon oil droplets were compared to the analytic and experimental

work of Mason and co-workers. In these calculations, a drop of density 0.98 g/cc and

diameter 1 mm was placed in an initial shear flow prescribed by v, = G(y - yd), for

points outside the droplet and v., = 0 for points inside the droplet. The parameter Yd

is is the y-coordinate of the center of the droplet and G gives the magnitude of the

shear. The y-coordinate of the velocity is initially zero everywhere.

Figure 1 shows the time evolution of one such calculation in which the viscosity

and small surface tension coefficients were small. The experimental results for this case

showed that the droplet stretches in the direction of the flow and small droplets break

from the tips. This is similar to the calculated results shown in Figure 1. The small

droplets shed in the calculation were larger than those shed in the experiments. The

discrepancy is due to the resolution of the numerical calculation, in which we have only

-41 a few triangles available to represent the shed droplets. More resolved calculations,

which we are currently doing, should provide a more solid basis for comparison with

the experimants.

5
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it 4New and unique calculations of the breakup of a dense fuel droplet in a hot air shear

flow were also performed. Here the stretching of the drop in the direction of the shear

is much less pronounced due to the large density of the drop relative to the background

air. Better resolution has allowed us to see smaller droplets being shed. Currently, very

resolved calculations are being performed. The results of these calculations have been

reported at the 1986 SIAM National Meeting, the American Physical Society Meeting of

the Division of Fluid Dynamics, November, 1986, and the Aerospace Sciences meeting

of the American Institute of Aeronautics and Astronautics, January, 1987. A detailed

discussion of one of these calculations can be found in Appendix A.

Calculations of Droplet-Droplet Collisions

A preliminary calculation of a droplet-droplet collision was performed. This prob-

lem consists of a stationary target droplet and a moving projectile droplet. In the

calculation, the two kerosene droplets were placed in a background fluid of hot air.

The target droplet is initially at rest, while the background fluid and the projectile

droplet on the left were initialized with a potential flow of I m/s about the target

droplet. Figure 2 shows the initial phases of this calculation. As the projectile nears

the target, both droplets deform and present nearly flat faces to each other. The lower

parts of the droplets begin to merge first. This merger is accomplished numerically by

the deletion of small triangles of background fluid between the two droplet interfaces.

Since the new interface now has a drastic change in curvature, the surface tension forces

try to expel the background fluid upwardly from between the two main sections of the

kerosene mass. This process produced large numerically generated fluctuations in the

pressures in that region.

Analyzing why this happened provides important information about problems in

the basic algorithm and potential solutions of these problems. First, there are potential

errors in the procedure used to delete triangles near interfaces. These would result in

a phase lag in the pressures at newly created interfaces. A second possibility has its

6
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origin in the values of the triangle velocities after vertex deletion. The triangle velocities

determine the rate of expansion or contraction of the volumes about each vertex. The

pressures react to prevent this change. When a triangle is deleted, the velocities of

the neighboring triangles must be altered to maintain conservation of momentum and

circulation. If these velocities are changed in such a way as to produce a huge volume

expansion, we would obtain the symptoms we observe.

These possibilites are being evaluated, several proposed fixes are being tested, and

the calculation will proceed once we have an answer to the problem.

Addition of Boundary Conditions

The experiments of Mason and coworkers of droplet shears were performed pri-

marily with highly viscous silicon oils with the shear flow maintained by the motion

of the containment device. Since the visous terms are sinks for energy in the SPLISH

algorithm, highly viscous flows damp very quickly to no flow at all. Therefore boundary

conditions which simulate the motion of the experimental container have been added

.. to the SPLISH algorithm in order to compare the code results to the experiments.

To implement this boundary condition a layer of triangles is placed just outside the

computational region on the moving boundary. These triangles have a density equal %

to that just inside the moving boundary and are given a prescribed velocity parallel

to the boundary. Through the viscous terms in the momentum equation, this kinetic

energy is then transferred to the background fluid. To model the experiments, we now

set the initial flow to zero everywhere except on the exterior boundary triangles. The

shear flow experiments used impulsive starts, which corresponds to giving the bound-

ary layer of triangles a constant velocity initially, and ramp starts, which corresponds

to giving the boundary layer of triangles a linear time dependent velocity up to the

desired boundary velocity.

We are also implementing inflow-outflow boundary conditions. There are problems

with doing this. some particular to our formulation. and others because it is simply a e%
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very difficult problem (see, for example. Oran and Boris, 1987). One problem partic-

ular to our formulation is geometric and associated with the addition and deletion of I

mesh points at the boundaries. Another is associated with conservation of circulation I

and vertex cell area because of the incomplete vertex cells for those vertices on the %

boundaries. A generic problem is the physical boundary conditions themselves which

determines how variables just inside the boundary, as well as the variables at newly

created vertices, are time advanced. The problem is made more difficult by the irreg-

ular mesh, since there is essentially no literature on inflow-outflow for incompressible .

flows differenced over a general connectivity mesh. Research on boundary conditions "

in computational fluid dynamics is an important ongoing area of numerical research.

The geometrical aspects of inflow-outflow boundary conditions we are now using

have been tested and work well. The algorithm deletes those triangles with no vertex

within the computational region and adds triangles at the inflow boundary whenever

any boundary vertex is completely within the computational region. The next step is

both easier and more difficult: placing more physically correct values of the physical

variables on the new triangles and vertices. At the inflow boundary, placing a prescribed

value of velocity on a bordering triangle may not produce a vanishing divergence on a ",,
nearby interior vertex. This means that the inflow triangle velocities need to be rotated

slightly to produce the appropriate incompressible flow. On the outflow boundary, the

physical variables need to be updated in a manner that will not produce numerically

reflected waves off that boundary. The form of the physical outflow boundary conditions

that would be best to use in our case are the Orlansky outflow condition as formulated

by Chan in his article Finite Difference Simulation of the Planar \lotion of a Ship. The S

positive aspect of his approach is that is upwind so there are no reflected waves and

hence we do not need to introduce artificial damping.
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Extensions of the SPLISH Algorithm to Three Dimensions

Extensions of the Lagrangian algorithm on triangular grids to a Lagrangian algo-

rithm on tetrahedral grids has always been a major goal of the work. However, as we

progressed into the problem, we realized what a major effort in algorithm development

is required. Our initial plans were that we would have additional funding from other

sources that we use for algorithm development, which, and in the last year of this pro-

posal, would allow us to calculate the properties of three-dimensional droplets instead

of two-dimensional cylinders.

The major algorithmic problem with Lagrangian tetrahedra involve the reconnec-

tions. In two-dimensions, the test for reconnection of a side is merely the comparisons

of two sets of opposing angles in the quadrilateral formed by the triangles on either

side, and the reconnection is merely the swap of the diagonals of the quadrilateral. Re-

connection in two dimensions is local to the side in question. In three dimensions, there

is no equivalent diagonal swap. Instead, one must consider several tetrahedra and faces

simulateously, in order to get the optimum grid connectivity. Currently, Dr. Martin

Fritts of SAIC has been working on this problem in collaboration with and with funding

from Lawrence Livermore National Laboratories and Los Alamos National Laborato-

ries. However, we at NRL are still somewhat skeptical about being able to apply the

three-dimensional SPLISH analog in an efficient way in the near future.

Therefore we have taken two other approaches. The first still involves triangles and

tetrahedra: we have successfully developed a finite-element version of the high-order

monotone scheme Flux-Corrected Transport, which uses triangles instead of quadri-

laterals as the basic elements. This is basically an Eulerian method, although a new

arbitrary Lagrangian-Eulerian (ALE) now exists. This work is being carried out at

NRL by Dr. Rainald L6hner under the sponsorship of both DARPA and NASA. These

methods now work well and are incorporated in production codes. Combined with a

front-tracking algorithm, this approach could now be used to calcualte droplet dynam-

ics in three dimensions.

9
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The second numerical approach is still in the conceptual stage. This involves using

the Monotonic Lagrangian Grid representation, developed by Jay Boris at NRL, as a

basis for Lagrangian fluid dynamics. This is an approach we hope to evaluate in the

next couple of years.

Continued Efforts to Make the Code Jklore User-Friendly

Our objective here is to produce a computer code which is more flexible in the

problems it can handle as well as more portable. The program SPLISH has the potential

to solve a large class of problems. However, because of the developmental nature of

the work, the code became a patchwork of additions and fixes. In order to apply

the algorithm with some facility to a variety of problems, some efforts in structured

programming was required. The code itself must be suitably structured so that the

modifications can be made in a straightforward manner. Approximately 80% of this

task is complete. The only major items remaining to be upgraded are the vertex

deletion algorithms for small triangles. This will be complete in FY'88.

Discussion

During the contract period, major advances have been made in this program both

in numerical technology and in the numerical solution of problems so difficult that

they have not been attempted before. The physical problems are the droplet breakup

in shear flows and droplet-droplet collisions. The numerical problems involve accurate

formulations of surface tension, boundary conditions, and grid restructuring algorithms

on the Lagrangian triangular grid. This coming year. in FY88, the results of the

droplets in shear flows will be written up and submsitted to the Journal of Fluid

Mechanics. The calculations of droplet-droplet collisions will be continued until the

numerical questions are answered and a case is run.

While the calculations of droplet-droplet collisions has only just begun. the

prospects for significant research results is great. The recent experimental results C.N.

10
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Law from the University of California, Davis and from Nassar Ashgriz from the State

University of New York at Buffalo will allow us some benchmark examples for further

code verification before poceeding to cases for which there are no experimental results.

We have already started talking with Professor Law and we are planning a case to

simulate.

The code reorganization start*d under the sponsorship of AFOSR will have the

most lasting benefit. With the capability of easy modification of a computationally

complex algorithm, the number of problems attacked by this approach could multiply.

One such problem is the behavior of a reacting liquid-gas interface. The computational

aspects of this problem is suited to the SPLISH algorithm. Algorithms for the con-

densation of the gas (or equivalently the evaporation of the liquid) would have to be

added. This is a problem of current interest to the Navy in connection with liquid-metal

combustion.

PERSONNEL

, ;r-7The funding for this contract has supported the research of Drs. David Fyfe and

Elaine Oran. Dr. Martin Fritts, who currently works for Science Applications, partic-
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Boris and Dr. Rainald L6hner regularly consulted on this work.
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The book Numerical Simulation of Reactive Flow by E.S. Oran and J.P. Boris, Else-

vier, 1987. Large portions of this were was based on work done in and material

developed during the course of this project.

Surface Tension and Viscosity with Lagrangian Hydrodynamics on a Triangular Mesh,

D.E. Fyfe, M.J. Fritts and E.S. Oran. to appear in J. Comp. Phys., 1988.

SCIENTIFIC INTERACTIONS

During the research period, we worked with Dr. Ann Karagozian from University of

California, Los Angeles, to modify her theoretical methods to describe the break up

of droplets due to shear flows around the droplet. The theoretical model includes

surface tension and viscosity and comes up with a droplet break up criterion.

We have been talking to Dr. Jack Hansman from MIT, who has visualizations of the

breakup of water droplets in a shear flow. These show that the droplet clearly loses

its spherical shape before it goes unstable and breaks up. His results are excellent

for comparing with our calculations.

We have begun to interact with Dr. Nassar Ashgriz from the State University of New

York at Buffalo. He has excellent experiments which we can model.

We have been talking extensively to Professor C.K. Law, from the University of Califor-

nia, Davis, about simulating some of the conditions of his droplet-droplet collision

experiments.

We have been consulting with Dr. Josette Belan from the Jet Propulsion Laboratory

about a range of parameters over which it would be of use to do a parametric

study of droplet breakup.

During fiscal year 1985, we started a dialogue with Dr. Murial Ishakawa, who is a

fluid theorist for one of the NASA shuttle flights. The experiments carried out

were by Dr. Taylor Wang, of JPL. who was interested in droplet oscillations and

oscillations of droplets within droplets. Our model was ideal for doing calculations

of his experiments, but due to lack of personnel and funding, no calculations of

13
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their experiments were ever completed. The net results was that we now have I
some algorithms for droplet rotation and droplets within droplets, but they have

not been applied to any problem.

During the research effort, Gopal Patnaik stared working with our group at NRL. He

did his dissertation with Dr. William Sirignano, now at University of California.

Irvine. Dr. Patnaik developed and did the calculations for the droplet model and

has consulted on our droplet program.

i
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Abstract Basic Elements of Lagrangian Trianular Grids

Numerical algorithms for surface tension and viscos- Consider a two-dimensional space which is divided
ity are presented in the context of a Lagrangian treatment into triangular cells. A section of this mesh shown in
of incompressible hydrodynamics with a dynamically re- Figure 1, which shows an interface between fluid type I
structuring grid. A test problem consisting of an oscillat- and fluid type II. In Figure la, a particular triangle . is
ing droplet is described. Calculations of droplet distortion highlighted by heavy lines and the various components of
and breakup in an initially constant flow and in an initial the triangle are labeled. Three vertices, V1, V2, and V3.
external shear flow are presented. are connected consecutively by sides S 1, S2, and S3 . The

direction of labeling around each triangle is counterclock-
wise and the z axis is directed out of the page. Since the

Introduction mesh can be irregularly connected, an arbitrary number

In principle, a Lagrangian formulation of the hydro- of triangles can meet at each vertex. We can define a

dynamics equations is particularly attractive for numerical cell surrounding a vertex, as shown in Figure 1b, by the
shaded region surrounding V3. The borders of such vertex-calculations. Each discretized fluid element is tracked as centered cells are determined by constructing line segments

it evolves through the interaction with its changing envi- cetrdelsaeeemidbyonruiglneemns
ronment and with external forces. The local interactions joining the centroid of each triangle with the midpoints of

can be represented without nonphysical numerical diffu- the two triangle sides connected to the vertex, for all tri-

sion. Conservation laws are simple to express since there angles surrounding that vertex. This definition of a vertex

are no fluxes out of the fluid element boundaries. The cell equally apportions the area of a triangle to each of its

paths of the fluid elements are themselves a flow visual- three vertices and provides a simple, efficient way to evalue

ization. It thus appears to be the natural approach to the finite difference operators.

transient hydrodynamics with free surfaces, interfaces, or
, sharp boundaries.

In practice, the use of Lagrangian methods in nu-
merical simulations has generally been restricted to "well-
behaved" flows. Shear, fluid separation, or even large am-
plitude motion produce severe grid distortion. These dis-
tortions arise because grid points can move far enough that
their near-neighbors change in the course of a calculation.
When differential operators are approximated over a mesh
which is distorting, the approximations may become inac-
curate. Attempting to regain accuracy through regridding FLUID

and interpolating physical quantities onto the new grid in- FWD
troduces numerical diffusion into the calculation.

We first describe the numerical technique for La-
grangian calculations using a restructuring triangular mesh b
[I] for incompressible, two-dimensional Cartesian Flows.
The major advance of this approach is that the grid auto-
matically adapts and refines itself to maintain accuracy for
discretized operators in a manner that is nondiffusive. The
algorithms have been implemented in the code SPLISH,
which has been applied to calculations of nonlinear waves
[2. 31, flows over obstacles [4), Kelvin-Helmholtz instabili-
ties [51, Rayleigh-Taylor instabilities [6), Couette flows and
Taylor vortex flows [7). We then describe the new surface
tension algorithms, and describe applications of the code
to calculations of droplet oscillations and distortions due
to the presence of background flows.
t.o t p nFigure 1. A section of a triangular grid showing a)

a material interface, b) a vertex-cell.
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The approach we describe is a conservative integral, 1/2 o N R°
control volume approach on a triangular grid that uses an ,i J - _-7P)o _f, 10)
integral formulation to derive the difference algorithms. 1/2 1 2

We use the expessions for the integral of the gradient of a v, = _(v + v'), 11

scalar funtion, f, and the divergence and curl of a vector _ +1

ji& field, v. in two Cartesion dimensions, , 6t
°  I 2 12)

";'5 = R ({ x-} ,q }). -, , (13
f dA=/ f d I, x, .n ...,/2 _tv +t f , 7-'nic= 2p + 2p,

7 -vdA v (dlx
. =xThe vertex velocity v, in Eq. (11) is obtained from the

V x vdA = Y -dl 4 (3) Tarea-weighted v, determined in the previous iteration.

A ic The transformation R results from the requirement ofconservation of circulation. Equation (13), which produces
where A is the region enclosed by the curve C and dl is conservation of circulation over vertex cell volumes, is a
the vector arc length around C in the counterclockwise consequence of this approach. It reflects numerically the
direction. fact that the triangle velocities must be altered as the grid

A triangle-centered quantity is assumed to be piece- rotates and stretches. The transformation R is derived
wise constant over the triangles with discontinuities occur- by considering the circulation about each vertex. Con-
ring at the triangle sides, and a vertex-centered quantity servation of vorticity then takes the form of the operator
is assumed to be piecewise linear over the triangles. If we R which preserves the value of the circulation about each
want to form a triangle-centered derivative, we use the tri- vertex as the grid changes.
angle as the area A and the sides of the triangle for the The pressures {pn} in Eq. (14) are derived from
curve C in Eqs. (1) - (3). If we want to form a vertex- the condition that the new velocities {vn} should be
centered derivative, we use the vertex-centered cell as the divergence-free at the new timestep, satisfying Eq. (5).
area A. We approximate the area integral on the left side The pressure Poisson equation is derived from Eq. (14)
of Eq. (1) - (3) by the area of the vertex-centered cell times by setting (V . n) = 0 to obtain a pressure p', such that
the value of the derivative at the vertex. We approximate J g

the line integral using the value on each triangle and the (V •t (vp)), + (V • +7 f, i5)
appropriate vector length through the triangle. This ap- P( v , ( -)
proach is described in more detail in Fyfe et al. [8].

The basic equations for inviscid incompressible hydro- Both terms in Eq. (15) are straightforward to evaluate.
dynamics are since the divergence is taken over triangle-centered quan-

dp tities. Two features of the Poisson equation, Eq. (15). are

d.t 0, (7) noteworthy. First, it is derived from 172  = V • 7o. as
dt in the continuum case. Second. the left-hand-side results

F - v = 0, (8) in the more familiar second-order accurate templates for
dv the Laplacians (such as the five-point formula) derived for

P-Tt + homogeneous fluids and regular mesh geometries.

In two dimensions the fluid density p, pressure p, and ye- Viscosity modifies Eq. (6), so that now
locity v are assumed to vary with z, y, and t. The term f,
represents external forces applied to the fluid, for example, dv (16)
forces due to gravity. P-+Vp= f+ VTv.(

In this formulation, it is important to consider which Discretization of the additional term in the momentum
of the physical variables, p, v, and p, should be defined equation follows the same approach as the discretization of
as vertex-centered quantities and which should be de- the other terms. Since the velocity is a triangle-centered
fined as triangle-centered quantities. Choosing these cor- quantity, we need a discrete vertex-centered gradient oper-
rectly ensure the correct conservation properties. We have ator and a discrete triangle-centered divergence operator.
found that prescribing velocities as triangle-centered quan- The finite difference equations, Eqs. (10) and (14), can be
tities makes the formulation of conservation of circulation modified to account for the additional term in the momen-
straightforward. Prescribing the densities on triangles and tum equation by
pressures at vertices allows conservation of vertex cell ar-i eas. 1 /2 ,o Rt ,o t P16t --2 o

The numerical integration procedure for velocities J- = - , + 9--',v'. 17

uses a split-step algorithm. The velocities are advanced , .= / bt 6, + V
a half timestep, the grid is advanced a full timestep, and P p , 2p, v ,
then the velocities are advanced forward the other half 2 . 2p.,
timestep: These equations are implicit in the velocities. just as the

original Eqs. (10) - (14) are. As in the inviscid case. we
solve by iteration.
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In Lagrangian calculations, the grid may distort to the found from the surface tension formula. Second, since

point where grid restructuring is necessary. The deriva- the pressure gradient forces and surface tension forces are

tions of the reconnection and vertex addition and deletion not calculated in the same manner, numerical errors result

and the use of triangle velocities. For all the algorithms Both of these problems are eliminated by a different

used, the divergence and curl taken about each vertex are formulation of surface tension. in which a surface tension
both identically conserved for grid reconnections and ver- potential is used to generate the forces. The surface tension
tex addition. force is formulated as a gradient of a potential present only

The accuracy of a general triangular mesh is dimin- at the surfaces. With this method. the pressure gradient
ished by large obtuse angles within triangles. With recon- forces are calculated in the same manner and on the same
nections, accuracy can be recovered by ensuring that large grid as the forces derived from the surface tension poten-
obtuse angles are preferentially eliminated. Of the many tial. Therefore both the surface tension potential and the
ways of formulating a reconnection algorithm, we have cho- pressure are dynamically similar, and the physical pressure
sen one based on requirements for solving the pressure drop across the interface must exactly cancel the surface
Poisson equation. Since the equation is solved by itera- tension forces. Preliminary aspects of this work were de-
tion. we want the iteration to converge as rapidly as pos- scribed by Fritts et al. [8.9].
sible. Mathematically, convergence is assured if the finite The finite-difference algorithms for surface tension are
difference equation is diagonally dominant. This require- straightforward. The surface tension forces are included
ment translates to a relation between two of the angles of through Laplace's formula for the pressure jump across an
each triangle. The reconnection algorithm preferentially interface [11],
eliminates large angles in triangles, since the diagonal is p.- p. = a/R. (16)
chosen which divides the largest opposing angles. Inter-
face sides are never allowed to reconnect. In such cases where pi is the pressure just inside the droplet at the inter-

vertex addition algorithms are needed. face, po is the pressure just outside the droplet at the inter-
Vertex addition algorithms are also needed where the face, a is the surface tension coefficient associated with the

Vertx aditin agorihmsarealsoneeed werethe two media which define the interface, ad R is the radius
flow naturally depletes vertices. For vertex addition, satis- o curvauei the ieial ane the radius

faction of conservation integrals is particularly simple. The curvature in the toinsion plane. There of

vertex added at the centroid of a triangle subdivides that Curvature is positive at points on the interface whwere the

triangle into three smaller triangles. A vertex added to the droplet surface is convex (a circle is convex everywhere)

midpoint of a side subdivides the two adjacent triangles and negative when the surface is concave. These pressure

into four smaller triangles. If the new triangle velocities jumps are included in the Poisson equation for the pres-
sure. The average pressure, (p, +po)/ 2 , is computed at the

are all the same as the velocity of the subdivided triangles, interface vertices. From the average pressure and the pres-
all conservation laws are satisfied. Since the reconnection
algorithm is also conservative, subsequent reconnections to sure jump, we can compute a pressure gradient centered
other vertices ensure that the only effect of the addition is on triangles, both inside ad outside the surface. This
an increase in resolution. pressure gradient is used in the momentum equation.

The case is not as obvious for vertex deletion. Recon- The radius of curvature is computed from a paramet-
nections can be used to surround any interior vertex within ric cubic spline interpolant to the interface vertices. Past

a triangle. The vertex is then removed and the new larger calculations of droplets oscillating due to surface tension

triangle given a velocity which is the area-weighted sum of forces [12,131 also use cubic spline interpolation. However.

the old velocities, redistributes circulation in accordance they divided the surface into at least four segments (the

with area coordinates, top, bottom. right and left sides of the droplet) to pro-
duce an interpolant on each segment. Each interpolant
was matched at the joints to produce an overall curve.
The parametric interpolant used here does not require this

SurfaceITension special matching. We generate the twice differentiable pe-
The surface tension at an interface between two ma- riodic spline interpolants. r(s) = (x(s). y(s)) as prescribed

terials depends on the curvature of the interface. In the by deBoor [141.
conventional numerical representation of surface tension, The spline fit is also used for regridding. When the
it is cast into a finite-difference form by fitting vertices on regridding algorithm calls for the bisection of a triangle
the material interface to some parametric function. This side which borders the two media, a new vertex is added
function is then used to find an estimate of local curva- on the spline interpolant between the vertices. This is
ture. Once the curvature is known, a surface tension force done rather than bisecting the straight-line segment, since
is evaluated and used to accelerate interface vertices, a straight-line bisection introduces spurious interface os-

This scheme fails in SPLISH for two reasons. First. cillations. Bisecting the spline maintains a better overall

the interface vertices are accelerated directly by surface shape for the interface. .
tension forces evaluated on the vertices. Since velocities
are centered on triangles in SPLISH. the velocity field sees
the effect of the acceleration a half-timestep later. unless
a secondary calculation is made. As a result, the pres-
sure calculated within the droplet is inconsistent with that
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Figure 2 is a composite of frames from a calculation in

In order to test the algorithm for surface tension in which e = 0. 2a = 0.0025. In this calculation there are 17
SPLISH. we calculated the oscillation of a droplet due to vertices in each direction along the exterior boundaries. 12
surface tension. We have extended Rayleigh's linear theory vertices on the droplet interface and a total of 313 vertices
[15] of small amplitude droplet oscillations to include the initially in the calculation. The computational domain is
presence of an external fluid, 0. 1 cm on a side. The left and right boundaries are peri-

a odic while the top and bottom boundaries are solid walls.
= (n ) (p d + p ')a, (17) The timestep is 6t = 2.5 x 10 - s. The figures shows four

and a half oscillations of the droplet. We can see that as
where"; is the frequency. pd is the droplet density, p, is the the calculation proceeds, no new vertices have been added.density of the external fluid, and the surface of the droplet but in fact some have been subtracted. This was the case
is given in polar coordinates by because the initial gridding was adequate to represent the

o bdroplet shape. From these calculations, the period of os-

r = a + e cos(n8), (18) cillation is r12 = 1.35 x 10- 1 s. compared to the theoreticalvalue of 1.13 x 10 - s. Figures 3 shows the initial oscilla-
where a is the unperturbed radius of the jet, and n pre- tion for a more resolved case in which there are 28 vertices

scribes the mode of oscillation in the plane with amplitude surrounding the droplet.

e.

Sa
3.2 x_-_30 x 1.X-3 X . 1.....

4_ _ - -

Figure 2. A composite of frames from a calculation of an n = 2 normal mode droplet oscil-
lation with 12 vertices around the droplet: p. g/cc, p1 = 2 g/cc, a - 30 dynes/cm,
a= 0.0125 cm. Each frame is 0.1 x 0.1 cm .

Time (a) 0.00 6.34 x 10
- 4  1.27 x 10 - 3

Figure 3. A composite of frames from a calculation of an n = 2 normal mode droplet
oscillation with 28 vertices around the droplet.
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Incompressible Flow about a Droplet

In this section we present some calculations of forced,
asymmetric drop oscillations induced by flow around a
droplet. These calculations include both the effects of vis- Table 1. Conditions for Flow around Droplet Calculation
cosity and surface tension. The capability of studying such
flows for viscous droplets in shear flows is the motivation density of kerosene 0.82 g/cc
for developing the viscosity and surface tension algorithms. density of air 00013 g/cc

The initial conditions we used specified an initially surface tension (STP) 30 dynes/cm
steady-state potential flow about a periodic series of cvlin- viscosity of kerosene 1.8 centipoise
ders. Again, the boundary conditions on the left and right viscosity of air 0.018 centioise
sides are periodic, and the upper and lower boundary con- air velocity 120 m/s
ditions are reflecting walls. Initially, a perfectly circular initial droplet velocity 0.0 m/s
droplet is at rest in a background flow. A physical situa- droplet radius 125 microns
tion modelled by such an initialization might occur if the
flow velocity were ramped up to its final value before any
significant structure could develop in the flow, and before
the droplet could pick up any substantial velocity. Basi-
cally, it is a smooth start for the calculation. Previously we
had performed calculations which began with an impuisive
start, but found that as a result there was a large amount
of momentum transferred across the droplet interface early
in the calculation.
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)Figure 4. Pathlines from a calculation of a flow around a kerosene droplet at flow velocity
* ,, of 120 mn/s and Re 2000.
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The calculations presented here model the forced fluid Distortions in the face of the droplet are evident in at
flow due to a fast air stream about an initially stationary least the seventh frame. These distortions occur because
kerosene droplet. The physical parameters. given in Ta- the curvature has increased and the streamlines in the ex-
ble 1, are appropriate for a combustor environment. A ternal flow are condensed by the approaching wake. The

.m.'\, total of 309 vertices were used to initialize the problem, I% with 12 vertices at the droplet interface. Figure 4 followsflowwit 12verice atthedroletintrfae. igue 4folows rates and therefore cannot be distinguished as pathlines.
the evolution of pathlines in the internal and external flow rate andto cante stin edas r atinfields through a series of timesteps. For an air velocity of niove indtino mall internal recirostion120 m/s and a droplet radius of 125 microns. the corre- m

sponding Reynolds number is roughly 2000. The pathlines at arious timeteps.
are defined by the paths of vertices over five timesteps. Figure 5 shows the grid at times in the calculation
By the last frame of Figure 4. the fluid originally to the corresponding to those in Figure 4. During the course of
left of the droplet has progressed through the mesh and the calculation, a great deal of vertex addition and deletion
interacted with the face of the (next) droplet. has occured. Vertex addition, however, is most noticeable

Tin the wake of the droplet and around the droplet interface.The first clear indication of the development of the W hereas there were 300 vertices at the beginning of the

recirculation region is seen in the fourth frame of Figure 4 calculation. there are 450 at the end.

which shows a pair of counter- rotating vortices. The recir- cluain hr r 5 tteed
culation zone continues to develop throughout the calcu- As seen in Figure 5. the computational grid needs fur-
lation, although at times the vortex pair is not as evident ther refinement at this time because the perturbations can-
due to the deletion and addition of vertices, which inter- not be resolved by the limits set on minimum triangle size
rupts the continuity of the pathlines. By the last frame, originally chosen for the calculation. A sign that the cal-
another pair of vortices is forming near the droplet, and culation is under-resolved is that one of the crests of the

, the original pair has been shed.

,'"%" $~~~PL!S I, SOH I ~l/.la
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S'

I Figure ti. Frames showing the triangular grid at the same times as shown for the pathlines
i.6 in Figure 4.6
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surface wave is spanned by a single triangle, a situation Summary
which allows no communication of that surface fluid with
the interior of the droplet. In order to continue the simula- This paper presented the current algorithms included

tion, better resolution must be obtained about the droplet in the code SPLISH. a two-dimensional Cartesian La-
surface. Another algorithm is currently being included to grangian treatment of incompressible flows with a dynam-

w, ,, allow higher resolution near points of large curvature at icalhy restructuring grid. Algorithms for nodelling viscos-

material interfaces. ity and surface tension have been tested on a number of

problems.

Detailed benchmarks of the surface tension algorithm

were presented using a Rayleigh oscillating droplet for a

A Droplet in a Shear Flow test problem. This algorithm, based on spline fits to de-

tcrmine curvature, was good enough to allow the droplet

An important problem in atomization is how a droplet to oscillate many times and still maintain a constant pe-

breaks up due to shear forces. To investigate this compu- riod. However, the amplitude calculated for the original

tationally, we have simulated droplets in a shear flow cen- excited mode decayed into higher modes. We believe this

tered around the droplet. The initial flow is prescibed by is due to a resonance coupling between the modes n = 2

v, = G(y - Yd) for points outside the droplet and t,, = 0 and n = 3. A similar resonance coupling exists in three

for points inside the droplet. The parameter Yd is the y dimensions[16].

coordinate of the center of the drop and G gives the mag- We are currently calculating droplet distortion and
nitude of the shear. The y-component of the velocity is breakup due to differential external flows, shear flows, and
initially zero everywhere, droplet-droplet collisions. Some of the results of these cal-

Results of a such a shear on a kerosene droplet in hot culations were shown in Figures 4. 5. and 6, and will be

air are shown in the three panels in Figures 6, for a case in discussed more thoroughly in the presentation.

which G = 5 x 10 3 /sec. We used 0.013g/cc as the density
for hot air. The remaining physical parameters are the
same as those in Table 1. Initially the droplet was round. Acknowledgements ,
but in Figure 6a it has already become elongated in the This work was sponsored by the Air Force Office of
directions of the shear. At a later time, in Figure 6b, it Scie Rsrc and the A s rc Labo

ha ecoe een oreelogate. Tmesintrmeiat to Scientific Research and the Naval Research Laboratory v
has become even more elongated. Times intermediate to
these two figures show that some very small droplets have through the Office of Naval Research.

already been pulled off of the large drop, but their size was %
so small that they were deleted from the calculations. Fig- N

* I ure 6c shows a still later time, when small droplets have
been are moving off of both sides. The small droplets some-
times seem to move counter to the flow of the main shear
layer. This is because a recirculation zone forms on the
upper left and the lower right of the large droplet.
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Figure 6. Four frames from the calculation of a droplet in a shear flow.
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Abstract

Numerical algorithms for surface tension and viscosity are presented in the con-

text of a Lagrangian treatment of incompressible hydrodynamics with a dynamically

restructuring grid. New algorithms are given which update previous Lagrangian ap-

proaches in the code SPLISH. Test problems involving internal gravity and capillary

waves, an oscillating droplet and a viscous shear layer are described. An example is

given of a flow calculated in and around a viscous droplet with surface tension in a

shear flow.
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I. Introduction

In principle, a Lagrangian formulation of the hydrodynamics equations is partic-

ularly attractive for numerical calculations. Each discretized fluid element is tracked

as it evolves through the interaction with its changing environment and with external

forces. The local interactions can be represented without nonphysical numerical diffu-

sion. Conservation laws are simple to express since there are no fluxes out of the fluid

element boundaries. The paths of the fluid elements are themselves a flow visualiza-

tion. It thus appears to be the natural approach to transient hydrodynamics with free

surfaces, interfaces, or sharp boundaries.

In practice, the use of Lagrangian methods in numerical simulations has generally

been restricted to "'well-behaved" flows. Shear, fluid separation, or even large amplitude

motion produce severe grid distortion. These distortions arise because grid points can

move far enough that their near-neighbors change in the course of a calculation. When

differential operators are approximated over a mesh which is distorting, the approx-

imations may become inaccurate. Attempting to regain accuracy through regridding

and interpolating physical quantities onto the new grid introduces numerical diffusion

into the calculation.

This paper is a summary and update of the latest additions and modifications

to a numerical technique for indefinitely extending Lagrangian calculations by using

a restructuring triangular mesh, first introduced by Fritts and Boris [1]. The major

advance of this approach is that the grid automatically adapts and refines itself to main-

tain accuracy for discretized operators in a manner that is nondiffusive. The algorithms

have been implemented in the code SPLISIL. which has been applied to cal:,llitiI.

of nonlinear waves [2, 3], flows over obstacles [4]. INelvin-tleliholtz instabilit is .

Rayleigh-Taylor instabilities [6]. Couette flows and Taylor vortex tlows [I].

Work on Lagrangian techniqies for grids which (it) not h ave fixedl connct iv it

has recently had a renaissance. Early attempts included the PANACE.-\ code 'S1 and

the PAF (Particle-And- Force) algorithm [9. 10]. In the i970's. liese concepts were

44



improved and extended for triangular grids: triangle reconnection by Crowly [11I:

MHD algorithms over a triangular mesh [121; and adaptive triangular neshes in the

work mentioned in the previous paragraph on SPLISH. During the same period work

began which used Voronoi meshes for hydrodynamics calculations [1:31.

Recently this use of general connectivity grids has rapidly expanded. as sumnma-

rized in the First International Conference on Free-Lagrange Methods [14[. Applica-

tions now include finite-difference and finite-element calculations of classic hydrody-

namic instabilities. tokamak modelling, high temperature plasma physics, heat con-

duction, wave-structure interactions, impact deformations, and hydrodynamics prob-

lems for both compressible and incompressible fluids. Free-Lagrange methods now use

quadrilateral, triangular and mixed meshes in two dimensions, tetrahedral meshes in

three dimensions, Voronoi meshes in both two and three dimensions, and methods

which are mesh-free.

In this paper we present the latest modifications to SPLISH (section I). These

include the most recent version of the rotation operator, which conserves circulation.

- and the residual algorithm, which ensures conservation of the area of cells. We also

introduce new algorithms for viscosity and surface tension. Including viscosity proved

to be straightforward (section II). However, the search for a good enough algorithm

for surface tension (section III) was more challenging and difficult. The basic problem

is defining a proper curvature from a finite number of points. Because of this. the

numerical approximation of surface tension forces between two fluids is conceptually

quite different from approximations of convection and viscous forces. The final formu-

lation chosen, a series of test problems, and a list of approaches that failed are detailed

(section III). Finally, we combine the convective transport. surface tension. and vis-

cosity algorithms to perform some preliminary calculations of flows in and around a

viscous kerosene droplet. These calculations show vortex shedding elehind the droplet.

distortion of the droplet due to the shear flow, and internal dhroplet lows.

'F,



II. Basic Elements of Lagrangian Triangular Grids

This section is a review of the derivation of low order finite-difference approxi-

mations to the equations describing incompressible fluid motion for general triangular

grids. Some of the material was originally presented by Fritts and Boris !1], and the

interested reader is referred there for more detail. However, new material brings the

previous paper up to date. This includes the lastest version of the rotation operator.

which conserves circulation, the residual algorithm, which ensures conservation of the

area of cells, and the new algorithm for viscosity.

.4. The Triangular Grid

Consider a two-dimensional space which is divided into triangular cells. A section

of this mesh shown in Fig. 1. which shows an interface between fluid type I and fluid

type II. In Fig. la, a particular triangle j is highlighted by heavy lines and the various

components of the triangle are labeled. Three vertices. V1. V., and 13, are connected

consecutively by sides S1, S2 , and S3 . The direction of labeling around each triangle

is counterclockwise and the z axis is directed out of the page. Since the mesh can be

irregularly connected, an arbitrary number of triangles can meet at each vertex.

We can define a cell surrounding a vertex, as shown in Fig. lb. by the shaded

region surrounding Va. The borders of such vertex-centered cells are determined by

constructing line segments joining the centroid of each triangle with the midpoints of

the two triangle sides connected to the vertex, for all triangles surrounding that vertex.

This definition of a vertex cell equally apportions the area of a triangle to each of

its three vertices and provides a simple, efficient way to evalue the finite difference P

operators. However, the definition of a vertex cell is arbitrary. Other definitions could

be equally well employed, although they generally require additional calculations to

determine cell intersection points. The integration of cell quantities may therefore

involve more arithmetic operations for other definitions.

6



B. Finite Differences on a Triangular Grid

Finite-difference approximations for derivatives of functions defined on the trian-

gular grid are derived from the expressions for the integral of the gradient of a scalar

funtion, f, and the divergence and curl of a vector field. v, in two Cartesion dimensions.

fVf d.4 = cf dlxI (2.1)

IA V vdA=cv.(dl x (2.2)

SVxvdA=jcv.dl (2.3)

In each of these expressions, .4 is the region enclosed by the curve C and dl is the

vector arc length around C in the counterclockwise direction. The variable i is a unit

vector in the direction of the ignorable coordinate. By using these definitions in a

conservative integral approach, the definitions for spatial derivatives described below
PP can be naturally extended to two-dimensional axisymmetric geometry [7].

Throughout the following discussion a triangle-centered quantity is assumed to be

piecewise constant over the triangles with discontinuities occurring at the triangle sides

and a vertex-centered quantity is assumed to be piecewise linear over the triangles. If

we want to form a triangle-centered derivative, we use the triangle as the area A- and

the sides of the triangle for the curve C in Eqs. (2.1)-(2.3). We then approximate

the area integral by the area of the triangle times the value of the derivative on the

triangle, and approximate the line integral using the trapezoidal rule on each side of

the triangle. For example. the gradient of a scalar function f (lefine(1 at tile vertices is

a triangle-centered quantity, (7f)). given by

S1

.. ( 'f)f r,_ - r,+I) x . l2.-t
5(J)

where r, = (.rI,..h) is a vector coordinate for vertex i and A,1 is lhe area of triall ,'e J.

We have also used the notation of Fritts and Boris [1] that 7 ,() is lit eirIret el as iI.

7
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sum over vertices i of triangle j. In the material presented below, the index i designates

vertex-centered quantities and the index j designates triangle-centered quantities.

If we want to form a vertex-centered derivative, we use the vertex-centered cell

as the area A. We approximate the area integral on the left side of Eq. (2.1)-(2.3)

by the area of the vertex-centered cell times the value of the derivative at the vertex.

We approximate the line integral using the value on each triangle and the appropriate

vector length through the triangle. For example. the curl of the vector field v at a

vertex c is approximated by

Ac( " 2 x V)c = (r,+ - ri) .. (2.5)
s(c)

where 4c = -4 - , is the vertex-centered cell area. -.,(c) is a sum over the triangles

around the central vertex c, -i(c) is a sum over the vertices around vertex c. and vi+p1 /2

is the value of the vector field v on the triangle having vertices c, i, i + 1. Similarly,

the divergence of the vector field v at a vertex is approximated by

A Jc(V = I [ -x j i ) ]  .' (2.6) "

i(c)
"J"

C. The Equations for Incompressible, Inviscid Flot,

The basic equations for inviscid incompressible hydrodynamics are
dj %"

- = 0. (2.7)
dt

V v =0, (2.)

dv
+ Vp = f (2.9)

dt%

In two dimensions the fluiid density /). pressire 1). and velocity v are assuied I to var. %

with r. y. and t. The term fe represents external forces a)pliedt lthe 1llia. 1,r Xalliile.

, %-

.J.

I



forces due to gravity. Equation (2.8), the condition for incompressibility. removes the

sound waves.

Since we want our finite difference approximation to preserve the conservation

properties for incompressible inviscid fluids, it is important to consider which of the

physical variables, p, v, and p. should be defined as vertex-centered quantities and

which should be defined as triangle-centered quantities. We have found that prescrib-

ing velocities as triangle-centered quantities makes the formulation of conservation of

circulation straightforward. Prescribing the densities on triangles and pressures at

vertices allows conservation of vertex cell areas.

The time integration of velocities uses a second-order implicit split-step algorithm

which is solved by iteration. The vertex positions are advanced using a second-order

midpoint rule. Specifically. the velocities are advanced a half timestep. the grid is

advanced a full timestep, and then the velocities are advanced forward the other half

timestep. The complete algorithm is as follows. First compute the half-timestep trian-

gle velocities using
v!25o t (St~=v.- -(Vp) 0 +-

1/2V) + , (2.10)

where the superscript o designates the values at the old time step. We then make an

initial guess for the new triangle velocities

V VO v 1/2

and iterate

1/2k 1 n.k-I 2.11)
v. =-(v° + v, ),-.1

V 2 V1 s

n,k 1 tv /2,k
X = x + bt%/2A 2.12)

v/2'k = R({x}.,{x" +}). '2.11)

)j~
9
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where the second superscript indicates the iteration number. The vertex velocity v "k

in Eq. (2.11) is obtained from a weighted average of the triangle velocities v". k for

those triangles having i as a vertex.

WjV
SZj) jv

We use ,j = OjpjAj, where Oj is the angle (in radians) of triangle j at vertex i divided

by -. The transformation R in Eq. (2.13) results from the requirement of conservation

of circulation, and is discussed in Section D below.

The pressures {pk} in Eq. (2.14) are derived from the condition that the new

velocities {vk} should be divergence-free at the new timestep, satisfying Eq. (2.8).

The pressure Poisson equation is derived from Eq. (2.14) by setting (V. v) k = 0 to

obtain a pressure Pi, such that

(V t ,k = (V,,k . 1/2,k) + (Vnk 6tf) (216)( 2 p,,p i pj _),

Both terms in Eq. (2.16) are straightforward to evaluate, since the divergence is taken

over triangle-centered quantities. Note also that the discrete gradient operator V must

also carry time advancement superscripts since it depends on the current grid location.

(See Eq. (2.4).) Two features of the Poisson equation, Eq. (2.16). are noteworthy. First.

it is derived from V2 0 = V . V6, as in the continuum case. Second. the left-hand-silde

results in the more familiar second-order accurate templates for the Laplacialis (such

as the five-point formula) derived for homogeneous fluids and regllar mesh 2,eoiiet ries.

4
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D. Conservation of Circulation

The approach we have outlined is basically a control volume approach which ises

an integral formulation to derive the difference algorithms. Equiation (2.1:3). which

produces conservation of circulation over vertex cell volunmes. is a consequence of t hil

approach. It reflects numecically the fact that the triangle velocities must be a Itel

as the grid rotates and stretches. This process does not prevent the addition or loss (A'

vorticitv clue to external forces or changes in density at interfaces. Rather it corects

any numerical errors that may arise because the grid has moved. Thus it .uarantees

conservation of circulation at those vertices where the circulation theorem applies.

The transformation R is derived by considering the circulation about each vertex.

Since triangle velocities are constant over the triangle, the circulation taken about

the boundary of the vertex cell can be calculated from Eq. (2.5). The conservation

of vorticitv then takes the form, of the operator R which preserves the value of the

circulation about each vertex as the grid changes.

Conservation of circulation requires that at each timestep. and for each vertex. c.

' 1/ k n,k nk o12 (21
vi+1/2 ri+1 -r ) = + + /

2
i(c) i(c)

For convenience in notation, we now drop the superscript 1/2 for the velocities and

the iteration superscript k appearing in Eq. (2.17). Since there are two coin poleli

of velocity on each triangle, but only one constraint at each vertex. tie form of tle

rotator is underdetermined. Fritts and Boris [11 provided the additional constraints lv

making each term in he circulation integral associated with a giveri triangle acu ,'serveI

quantity, and hence the sum in Eq. (2.17) remains unchanged. This means t lar for

each triangle j.

* (r, - r') = v, .(r,+ 1 - r'). i = 1.2. :3. 2. 1,

Althougli this appruach conserves circulation. tlie followiig exaiple silows l ,ai i-

imuch too restrictive.

1I
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tLet usasuecompose Vi+12it <1 c cupollt, t,12 1rallcl toIlie ' )-

posite vertex c, and a component. 7?n12 1101normal to tile Sidle oI)Po~site Ven tex c i I

wriing6Vt l/2 ---: " +1/ ' ZX (r,+, - r) + t 2r i+ - F

z+1/2 ? j+1/2 -
t sii/ Ir,±i - rj (.1

With this notation and using the equation for the area. .4i,/2. of trianigle i+ 1/2.

2A+/ 2  ." [(ri+ - ri) x (r" - ri+ )1, (2.22)

Eq. (2.20) becomes

2A+ 1 / 2  + (ri+ 1 - ri) (r, - ri+i)

[ri+l - ii/2 ri+ - ri+

-2-.-1/2 (ri - ri-1) -(ri-1 - i/2 (2.2:3)+ r7-: ri_lI l i - 1/ 2 +1  Iri - ri-l1

= (V 1 /2 - V:+, 2 ) rc.

Let N denote the number of triangles (vertices) about an interior vertex c. The N

equations given by Eq. (2.23) for the 2Nc unknowns {ti+1/ 2} and {fn,+ 2} are linearly

dependent. This can be seen by summing the equations. which produces the equation-

for the change in circulation about vertex c. The equation for the change in circulation

at vertex c is a linear combination of the t+i1/2's. which is equal to zero. Since we want

the ti+1 /2's to be linearly independent, we can set ti+1/2 = 0 for all i. We still imeed

another equation to determine the normal component for the change in velocities on

the triangles.

Let us for the moment write that equation as

NZ cil/,n i/) 1). "2.'2 1

1Using Eq. (2.23) with t,+112 0 for all I. wO (al sIICcOsi%,,lv t.liln illm te ' i /

i .......- 1 in Eq. (2.24) until we arrive at i lir Iti\ f." iiitt lit' N

13
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numbering of the triangles and vertices is arbitrary, this expression is valid f,)r eali

triangle i + 1/2 by replacing nN'+1/2 with fli+ 1 1 2 and v.\-+I/2 with v,+,/_. The rosuIlt

is that

- z x (rj+ i - r,)Svi+1/2 = 2-4j+1/2

Fb C/k+, 2 1rk+ - rkl (v./ - v2+/2). r] / Ck/_rk+ - rkl

k(c) 2-k+1/2 k(c) "k-14-I/2
(2.2.5)

Several alternatives are possible for Eq. (2.24). If we conserve divergence about the

vertex c, then
ei+1/2= Irj+i - rij,

(2.26)

The transformation R prescibed by Eq. (2.25) is time-reversible, hence Eqs. (2.10)-

(2.14) are also reversible. The entire algorithm advances vertex positions and veloci-

ties reversibly while evolving the correct circulation about every interior vertex. This

technique is unique for Lagrangian codes, which usually either ignore conservation of

circulation completely or conserve circulation through an iteration performed simul-

taneously with the pressure iteration. With this method the circulation is conserved

exactly regardless of whether the pressures have iterated to their final values.

E. Viscous FloWs

Viscosity modifies Eq. (2.9), so that now

(IV
P,-- + Vp = f, + jtV2 v. (2.27)

- dt

Discretization of the additional term in the momentum equation follows the same ap-

proach as the discretization of the other terms. Since the velocity is a triangle-contered

14
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uquntity, we need a discrete vertex-centered gradient operator. and a discrete triaiigle-

centered divergence operator. Employing the same techniques as above we have

= Zf,+1(r,+i - ri) x .. (2.28)
2(c)

ail(1
.4('•v,= Zv (ri+1 - ri- 1 )] . :,. (2.29)

i(j)

The Laplacian is found by taking the divergence of the gradient.

The finite difference equations, Eqs. (2.10) and (2.14), can be modified to account

for the additional term in the momentum equation by

= o fe + 2jt ,"2 ,M/k . t ('7p)t + +J. (2.30)vj = j p- 2pj 2p i vv)j

V n v -' k (vp)k + 6- f, + (Vs' k  Vn,kvn k -  (2.31)
2pj 2pj

These equations are implicit in the velocities, just as the original Eqs. (2.10)-(2.14)

are. As in the inviscid case, we solve by iteration.

This algorithm was tested by Calculating the spreading of a shear layer of initially

zero thickness given by

(v.,0), for y > Yo,
v(xyt = 0)= (0,0), for y = yo, (2.32)

(-v,,0), for y < Yo.

where y, is the original location of the vortex sheet. The velocity distrilbution across

this layer evolves as

V(z,y,t) VX erf jg 2 (2.33)

where v' = . The width Ay of the layer grows as

Ay , 8(Vt) / 2. 2.3 1)

15



TW.RI

For the test calculation the grid was initialized to center a vortex sheet in a grid

16 cells wide with an initial layer width of zero. The two opposing streams had initially
constant velocity profiles. The evolution of the interface between the streams was

governed by the same algorithms as the interior of either fluid, so that no special

interface boundary condition was used. The boundary conditions on the sides of the

computational region were periodic, and the top and bottom had free-slip boundary

conditions.

At the end of the calculation. the layer width agreed to within numerical roiindoff

with the theory and the layer extended over the whole mesh. The velocity profile for

each stream coincided with that given by Eq. (2.33) to within round-off error. The

y-components of the velocity remained zero, indicating that the algorithm was working

well for the grid distortions presented by the problem.

F. Conservation of Vertex Cell Areas

Equations (2.10)--(2.14) are implicit in the triangle velocities {V'}. Because these

equations must be solved iteratively to produce a divergence free velocity field, a

small residual error may remain. In addition. vertex velocities are derive(l froin lie

divergence-free triangle velocities. In practice this means that vertex cell areas may

not be conserved. Furthermore, as the flow progresses. the triangle sides listort. Yet

at any given time we compute using straight triangle sides, which does not prodlc:e tle

equivalent cell area about any given vertex. However, since we know what the triangle

area should be, it is possible to at least make a correction to the known error. Our

approach, then, is to perform an ad hoc correction step after all the vertices havo been

advanced in time. This correction step moves the vertices in order to conserve vertex

cell area. After this vertex correction step, the rotator is applied to ensure tlat Illo

circulation has not been changed. t

16
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To expand or contract a vertex cell area, we must expand or contract the silt'rodlltl-

in(g triangle areas. Suppose we wish to expand a triangle j with area .4 and wertex

coordinates r, by an amount 6.4,. To do this we will move each vertex r,. an amount

-r = (I [5 x (r,_l - r,+i 1. (2.35)

that is, the vertices of the triangle are moved normally to the opposite side a distance

prescribed by the triangle expansion factor, d,. If d, is positive. the triangle area

increases. Using the vector definition for the area of a triangle, we have

2n.4w = 2,4 2
_ 2--

= [(R,+i - r1, v) X (r ,r'-")] - [(rj+- rj) x (r,-r,-,.- ,

= (il- ri) x (tbri... - 6ri,)] *5Z + [(6ri+l - 6ri) x (r,-.1 - r,+ 1 ] (2.36')

+ [(br,+1 - 6r,) x (6r,_l - ,r,+i)] •
2V

= dj + 6A4jd2,

where s2 is the sum of the squares of the sides of the triangle. This quadratic in the

expansion factor. dP, can be solved to yield

-s 2 + Vs + 484 4
(d - (2.37

The sign in front of the square toot was chosen to ensure d, has the sane sign as

We relate the change in triangle area. 6.4p to the conservation of vertex cell areas

through
A A .4, (2.3)

a j) = 3 At 4,°

where the sum is over the three vertices of the triangle. .4, is the current area about ver-

tex i and A' is the original area about vertex i. Basically. the cha nge ill vertex cell areas

is apportioned to each contributing triangle according to that triangle's contrilit ion

to the vertex cell area.
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" Although this residual correction is a salnmrcleffect, we hmefudthat it

improves the overall results of a calculation. Because this algorithm expands triangles. .

it has potential for modelling other physical processes. In a conlpressible algorithmn

involving energy release and lld flows with transit times which are small compared to

the energy release times, this algorithm could be used to produce the requir-ed expan~sioll

of the vertex cells.

G. Grid Restructuring

In Lagrangian calculations the grid may distort to the point where grid restructur-

ing is necessary. The derivation of the reconnection and vertex addition and deletion

alg-orithms are done through the control volume approach and the use of triangle veloc-

ities. For all the algorithms used, the area-weighted divergence and curl taken aboult
each vertex are both identically conserved for -rid reconnections and vertex addition.

The accuracy of a general triangular mesh is diminished by large obtuse angles
within triangles. With reconnections, accuracy can be recovered by ensuring that large

obtuse angles are preferentially eliminated. Therare many ways of fornulatiing

reconnection algorithm. The one we have chosen is based on requirements for solving

the pressure Poisson equation. The pressure Poisson equation is formally equivalent to ,
that obtained by a piece-wise linear Rayleigh- Ritz- Galerkin finite element procedure

on a triangular gridm (See, for example [15.) Since we solve the equation by iteration.

we want the iteration to converge as rapidly as possible.lsathematically, conv V0e Ie

-N

is assured if the finite difference equation has a axinini principle: that is. all TIit

off-diagonal terms are negative, the diagonal term is positiv-e and greater thanl ur ,,qtlal
to the absolute value of the sum of the off-diagonal terms, with strict inequality for at

least onecessay. Th atone equation typically invoes o ary cad ondelns. eir

boundar condition prescribes the integrated pressure along the upper boun ary. )
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,kA ' To see how large angles affect the naximum principle, consider the difference

equation for vertex 1 of Fig. 3a. The off-diagonal coefficient relating vertex 1 to vertex
jis

1 0
a = (cot 0- +cot 0) (2.39)

where 0+ and 0- are the angles opposite the line from the vertex j to the vertex I

as shown in Fig. 3a. The other off-diagonal terms are determined in a similar man-

nerfrom the remaining edges eminating from vertex I. The diagonal coefficient is the

negative of the sum of the off-diagonal terms. For positive area triangles. 0+ and 0-

are both between 0 and 180. Hence, each term in Eq. (2.39) is negative only when

0+ + 0- > 180, since

sin(0 +  + 0)
a= 2 sin 0+ sin 0- " (2.40)

The reconnection algorithm ensures that the angles subtended by any given edge

sum to no more than 180 '. If 0+ + 0- is greater than 180 ', the grid line is reconnected

as shown in Fig. 3b. The new angles, 0'+ and 0', must sum to less than 180' since

_ (0+ +0- +0 '+ +0'-) is the sum of the interior quadrilateral angles. which must be 360

By chosing the diagonal which divides the largest opposing angles. the reconnection

algorithm preferentially eliminates large angles in triangles.

Interface sides are never allowed to reconnect. In such cases vertex addition algo-

rithms are needed. Vertex addition algorithms are also needed where the flow naturally

depletes vertices. For vertex addition, satisfaction of conservation integrals is partic-

ularlv simple. The vertex added at the centroid of a triangle subdivides that triangle

into three smaller triangles. A vertex added to the midpoint of a side sObwividhs the

two adjacent triangles into four smaller triangles. If the new trialo velocities are all

the same as the velocity of the subdivided triangles, all coiiservatiou laws arc sat is-

fied. Since the reconnection algorithm is also conservative, suibSequent recottctilkct t

to other vertices ensure that the only effect of the addition is an increase in resol ti, n.

,.51
',
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% The case is not as obvious for vertex deletion. Reconnections can be used to

surround any interior vertex within a triangle. The vertex is then removed and the new

larger triangle given a velocity which is the area-weighted sum of the old velocities,

.IVI = Aivi + Ayvj + AkVk. (2.41)

Such a substitution redistributes circulation in accordance with area coordinates. Fig-

ure 4 illustrates the triangles before and after vertex removal. If C is the vorticity

about vertex 4 before it is removed, then the vorticitv about each of the other three

vertices is increased by an amount (' given by

'= Ij4A
(2 = AkC4/A, (2.42)

(3' = Aj 4/A41

where
¢ + (3 (4;

since

Ai + Aj + Ak = Ai.

Therefore, total vorticity is conserved and redistributed in a reasonable and natural

manner.

III. Surface Tension

20
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.4. The Algorithm

The surface tension at an interface between two materials depends on the curvature

of the interface. In the conventional numerical representation of surface tension, it is

cast into a finite-difference form by fitting vertices on the material interface to some

parametric function. This function is then used to find an estimate of local curvature.

Once the curvature is known, a surface tension force is evaluated and used to accelerate

interface vertices.

This scheme fails in SPLISH for two reasons. First, the interface vertices are

accelerated directly by surface tension forces evaluated on the vertices. Since velocities

are centered on triangles in SPLISH, the velocity field sees the effect of the acceleration

a half-timestep later, unless a secondary calculation is made. As a result, the pressure

calculated within the droplet is inconsistent with that found from the surface tension

formula. Second, since the pressure gradient forces and surface tension forces are not

calculated in the same manner, numerical errors result which grow with each timestep.

Both of these problems are eliminated by a different formulation of surface tension.

in which a surface tension potential is used to generate the forces. The surface tension

force is formulated as a gradient of a potential present only at the surfaces. With this

method, the pressure gradient forces are calculated in the same manner and on the same

grid as the forces derived from the surface tension potential. Therefore both the surface

tension potential and the pressure are dynamically similar, and the physical pressure

drop across the interface must exactly cancel the surface tension forces. Preliminary

aspects of this work were described by Fritts et al. [16, 17].

The finite-difference algorithms for surface tension are straightforward. The sur-

face tension forces are included through Laplace's formula for the pressure jumnp across

an interface [18],

pi - Po = o/R, (3.1)

21
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where pi is the pressure just inside the droplet at the interface. Po is the pressure

just outside the droplet at the interface, a is the surface tension coefficient associated

with the two media which define the interface, and R is the radius of curvature in the

two-dimensional plane. The radius of curvature is positive at points on the interface

where the droplet surface is convex (a circle is convex everywhere) and negative when

the surface is concave. These pressure jumps are included in the Poisson equation for

the pressure. The average pressure., (pi + p0 )/2, is computed at the interface vertices.

From the average pressure and the pressure jump, we can compute a pressure gradient

centered on triangles, both inside and outside the surface. This pressure gradient is

used in the momentum equation.

The radius of curvature is computed from a parametric cubic spline interpolant to

the interface vertices. Past calculations of droplets oscillating due to surface tension

forces [19. 20] also use cubic spline interpolation. However, they divided the surface

into at least four segments (the top, bottom, right and left sides of the droplet) to

produce an interpolant on each segment. Each interpolant was matched at the joints

-, 7  to produce an overall curve. The parametric interpolant used here does not require

this special matching.

The parametric spline is produced in the following manner. Denote the interface

vertices by ri = (Xi. yi), i = 1,...N, with rx = rl. Also define a pseudo arc length

parameter. s. such that the spline knots occur at the points

s1 0 ,
(3.2)

Si= sii + Iri - ri-I1. i = 2 .... N.

\We generate the twice differentiable periodic spline interpolants. r(.,) (.() )

from the data {s}, and {r,}, i = 1...... V. as prescribed by DtBoor [21]. The

curvature is then given by

K- R-' = Ir" x r'1
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where the prime indicates differentiation with respect to the parameter s. The sign of

R at an interface vertex, ri. is given by the sign of [(r,+, - r,) x (r,_1 - r,)].

We can iterate the process if necessary. From the spline fit we can generate new

values for the {si} by integrating the expression for arc length along a parametrically

prescribed curve. For symmetrically placed vertices on a symmetric droplet, however.

we have found the iteration on arc length parameter is unnecessary.

The parametric spline fit is also used for regridding. When the regridding algorithm "

calls for the bisection of a triangle side which borders the two media, a new vertex is

added on the spline interpolant between the vertices. This is clone rather than bisecting

the straight-line segment, since a straight-line bisection introduces spurious interface

oscillations. Bisecting the spline maintains a better overall shape for the interface.

B. Test Results

We tested the algorithm for surface tension in SPLISH using two test problems.

The first test problem consists of internal capillary waves. In the second test problem

we calculated the oscillation of a droplet due to surface tension. For completeness we

also present calculations of internal gravity waves as a test of the overall hydrodynamic

algorithms in SPLISH.

1. Internal Gravity and Capillary Waves

The linear theory for the small amplitude oscillation of an interface between two

fluids, bounded above and below by solid walls, gives the frequency as a function of

wavenumber k,
2_ (p - p')Yk + a70=. (3. 1

p coth k/i + p' coth kh' 1

Here the upper fluid is of depth ' and density p'. the lower lulid is of ,hpil 11 aill

density p. g is the acceleration due to gravity and oT is thle coetlicient of surface t,, si,,n

for the two media. Following the free-surface wave calculations of Fritts and Bolris !,
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we take k = 2w/A, A = 2.5 cm. h = h'= 1.0 cm. p = 2 g/cc. and j/= 1 g/cc. F ,a

internal gravity wave, we have g = 980 cm 2 /s and o, 0 dviies/cm. For an internal

capillary wave, we have g = 0 cm?2 /sec and a = 30 dynes/cmn. These values give a

period 7 = 2-r/,L = 0.22073 s for the internal gravity wave and 7 = 0.50196 s for

the internal capillary wave. The amplitude of the oscillation is taken as .4 = 0.06721h.

For this amplitude the free-surface oscillations of Fritts and Boris [11 showed negligible

non-linear effects. Figure 5 shows the initial grid for the mesh size cs = 0.125 cii.

Figure 6 shows the wave period as a function of mesh size for the internal gravity

wave problem. The ratio of timesteps for any two calculations was the same as that

for the mesh sizes. Each data point on the curve is an average over several periods and

is accurate to three digits. If we extrapolate to zero mesh size using a parabolic least-

squares fit. = 7 0 + b6s + a(6s) 2 to the data points, we obtain 7o = 0.2214. b = 0.0726.

and a = 0.1549 for this problem. The extrapolated value, r0, is accurate to 0.37. The

finite-difference derivatives given in section II are accurate to second order in the mesh

size for triangular grids in which the centroid of a vertex cell is the vertex itself. The

truncation error is linear in the distance between the vertex and the centroid of the

vertex cell. This truncation error can occur in this problem for vertex cells near the

interface in our discretization and hence the linear term in 6q in the above quadrati,

expression. This linear term has a coefficient on the order of the wave amplitide wlich

is the approximate distortion of the grid. The order of convergence for the alrit in

is essentially quadratic with a small linear contribution.

Figure 7 shows the wave period as a function of mesh size for the internal capillary

wave problem. Here the least-squares fit to the data gives 0 = 0.4995. 1 = 0.219S.

and a = 0.0640. The extrapolated period is accurate to 0.57. Wi h surface tensiun

included, the convergence is primarily linear in the mesh size. The reduction in rate of

convergence is is due to the use of cubic splines to calculate tile curvatures. Th, 'l'

spline curve itself is fourth-order accurate. and theorems exist showing the secoiil-r ,,r
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Saccuracy of its second derivatives. However. we know of no theorem ,iving the

of the combination of derivatives needed to produce the c:urvature in Eq. (3.3).

2. Droplet Oscillation.

As a futher test of the algorithm for surface tension in SPLISII. we calculated the

oscillation of a droplet due to surface tension. Rayleigh [22] derived a linear theory for

small amplitude oscillations on cylindrical jets that applies to the cylindrical droplets

we are discussing. Ile concluded that when the perturbation is totally in the plane

perpendicular to the axis of the cylinder, the frequency. .w. for the oscillation is given

by

6a,,2 = (t13 - n) -aa, (3.4)

where the surface of the droplet is given in polar coordinates by

r = a + Ecos(nO), (3.5)

9- , awhere p is the density of the jet. a is the unperturbed radius of the jet, and n prescribes

the mode of oscillation in the plane with amplitude c. For large amplitude oscillations.

Ravleigh found that the experimental frequency diverged from that predicated by the

linear theory. and he attributed these differences to nonlinear effects.

We have extended Rayleigh's theory to include the presence of an external fluid.

Equation (3.4) then becomes

6 i= (1 3  _ 1) tlPd -t p, ),a3 "( } ;

where Pd is the droplet density and /) is the density of the external fluid.

The tests of the surface tension algorithm consisted of a series of calculations of

oscillat ions initiated in the lowest oscillating mode. n 2 in Eq . (3.(W. \Iso. we lI ave

chosen

a = 0.0125 r-m

2.5
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,T= :30 dynes/cin,

vali is which are typical for many practical droplet problemns. Ve discliss rs iii f

two different sets of coidit ions. First we consider a droplet density of 2 'cc in

backgrouind external ti, ld density of I/co. If we use the definition of the pcrio, I,1

2 -/. Eq. (:3.6) gives a period

7 = 1.13 x 10 - 3 s.

The second set of conditions are for a kerosene droplet. with density 0.82 g 1 ii

background of air, with density 0.0013 g/cc. This second case. with the 650:1 density

ratio, is a stringent test of the numerical approximations.

Figure 8 is a composite of frames from a calculation in which c = 0.2a = 0.0025 cin

for the 2:1 density ratio case. In this calculation there are 17 vertices in each direction

along the exterior boundaries, 12 vertices on the droplet interface and a total of :313

vertices initially in the calculation. The computational domain is 0.1 cm on a side. The

40 left and right boundaries are periodic while the top and bottom boundaries are solid

walls. The timestep is t = 2.5 x 10-
5 s. The figures shows four and a half oscillations

of the droplet. We can see that as the calculation proceeds, no new vertices have been

added, but in fact some have been subtracted. This was the case because the initial

gridding was adequate to represent the droplet shape. From these calculations. lie

period of oscillation is

r712 = 1.35 x 10- s.

Similar calculations with 20 vertices surrounding the d rollet (;a 21x21 I-liI) sliw a

period of

7..,0 = 1.3:3 x 10- :I s.

for 2-1 vertices surrounding the droplet (a 25x25 grid) we have a perio, of

• 'r72 4  1.31 x 10 - :'
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A ,and for 28 vertices surrounding the droplet (a 33x33 grid) the period is

7r28 = 1.27 x 10- 3 s.

In each case. the period does not change during the calculation Fbilres 9 and I) how

the initial oscillation for the more resolved cases. For these calculations, it was ie:essar\v

to decrease the timestep, as discussed below. The time step for the calculation with 12

vertices surrounding the droplet is such that the period cannot be resolved to better

than two digits. It appears that the calculations are not converging to the theoretical

value, but to a value of 1.19 ± .06s, based on the graph of the computed period as a

function of mesh size shown in fig. 11. The convergence is essentially linear as it was

in the internal capillary wave test problem, but with a numerical error of about 5.5%

for this calculation.

Since the internal wave tests show much better convergence properties for the algo-

rithm, as do previous free-surface wave calculations [1, 2], than the droplet oscillation

test problem, we performed several other numerical tests on the droplet oscillation
problem to determine if the poorer convergence properties were due to other numerical

parameters.

Firstly. we tested whether the presence of boundaries a finite distance away could

alter the calculated period by performing calculations in a larger domain of linigth

0.2 cm. Here there were twice as many vertices on the boundary. btt still oly 12

vertices surrounding the droplet which was the same size as the droplets in tle tests

described above. These calculations showed no change in period, so we conclul, lIat

the effects of periodic boundaries and reflecting walls are negligible.

It was also important to evaluate the possible effects of n lit'icait V in tY I , 1!1' ,,11.

The theoretical value is from a linear analysis. and tho ,i lcullitii ii 4 it t,'fll .

calcuilation. It is possible that this couild account for part (,f i, lisri.iiv. ,

this, we performed calculations with smaller amplitudes. r. to *,,,., if t11% '..

difference in calculated period. The result was that the wimerictal valite f it', I,* 'i
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was the same for c = O.Ola = 0.000125 cm over the course of two oscillations &S it wa-s

for E = 0.2a. Our conclusion is that the calculations were in a range in which the liii2ar

theory is valid.
We used two diagnostics to determine the period of the computed droplet oscil-

lation. One is the time history of the position of the rightmost vertex on the droplet

interface, denoted by x,. The other diagnostic is the quadratic moment, defined by

< >= dx dy(3.7)

where the integral is performed over the triangles which define the droplet. Tables I -

IV give the values of < x2 > and x, as a function of time for the resolutions of 12 and

24 vertices surrounding the droplet. From the maxima and minima in Tables I and III.

we can determine the period of oscillation. It is less well defined from the values of x,

in Tables II and IV. However, it never differs by more than two timesteps from that

given by the moments.

Finally, we examined the oscillations of a kerosene droplet in air. This calculation

* . : tests the effects of the external fluid density on the numerical convergence of the pres-

sure algorithm as well as any role the external fluid may have in introducing higher

frequency modes. Here the theoretical value of the period is 5.9 x i - s. Using a resolu-

tion of 12 vertices around the droplet surface. we find a computed value of 7.1 x 10' s.

The ratio between the theoretical and numerical results is 0.83. compared to a ratio

of 0.84 for the 2:1 density ratio calculation at the same resolution. Since changing the

density ratio from 2:1 to 650:1 did not alter the relative error. we conclude that only

minor errors arise by including of the external fluid in the calculation.

A.
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C. Some Difficulties and Limitations j
We now believe the that the inability of the method to produce as accurate a

solution for the droplet oscillation test problem as for the internal wave test problems is

a combination of the physical problem itself and the spline approximations to curvature.

The surface tension algorithm discussed above suffers a basic problem in curve

fitting. We are trying to approximate an unknown continuous function by a known

curve through a finite number of points or computational cells. For example. we are

trying to represent the droplet interface or capillary wave interface by a spline fit to

a finite number of points. Whereas an accurate interpolant can be found that goes

through a set of points, it is not always clear that the other properties of the curve

calculated at the points. e.g., the curvature, are well represented by this interpolant.

Splines are notorious for introducing spurious oscillations between the points defining

them initially.

Figure 12 shows the curvature at each vertex around the droplet. The exact

curvature for the initial drop is compared to the curvature produced by the spline

interpolant and to curvatures produced after one oscillation is completed. The initial

curvature, defined by splines on the interface vertices, is reasonable. However. by the

end of a cycle, there are spurious oscillations even though the curvature has the same

basic shape.

In the internal capillary wave problem. the range of values for the interface Curva-

ture was a factor of 15 smaller than for the droplet oscillation problem. As a result the

interface curvature for the internal capillary wave is determined with greater accuracy.

In the droplet oscillation problem where the interface -bends- more sharply. the sjiie

has a greater difficulty approximating the curvatures accurately. -P

Interpolations can cause other problems in the calculations. Our calculations have

shown that the final result can be affected by the location of additional vertices used

to obtain a better initial approximation of the droplet inter face. The grid init ializat on

procedure involves two phases: a first phase to generate a course grid. and a ,cc,,lIo
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phase which refines the grid produced in the first phase. During the refinement phase.

we have two chices for the location of new interface vertices. The initial grid produced

in Fig. 8 placed new vertices on the droplet defined by the Rayleigh oscillation mode.

We could also add the vertex on the existing spline interpolant. Figure 13 shows < r2 >

as a function of time for the two types of initialization. The curve labelled I is the

calculation in which the additional vertices were placed on the Rayleigh drop. The

curve labelled 2 placed the additional vertices on the spline fit. After one oscillation.

the value of < x"2 > differs by 8%. After one oscillation the value of < x2 > on the

curve with label 1 is lower than the initial value of < x2 > and the value of < x'2 > on

the curve with label 2 is higher than the initial value of < x 2 >. Notice also that the

period, as well as the amplitude, is affected by the type of initialization.

In Fig. 8 we see that the amplitude of the droplet oscillation decays as a function

of time even though the period is not changing. The damping rate is about 18% per.

oscillation. The shape of the droplet at the end of the calculation is notably different

than it was at that same place in an earlier oscillation cycle. In the ideal case. this

4A would not occur.

The decay of the oscillation is also apparent in the moment < x 2 > and the

variation in the location of x, from oscillation to oscillation. It is apparent from Fig. 14

that the < x > moment is dissipating, and it is apparent from Fig. 15 that the overall

shape of the droplet is changing. Energy associated with this lowest-mode oscillatiun

is going into other modes, which is reflected in the reduction of the timestep required

to keep the computations stable. In general. to carry out these droplet oscillatio",

calculations it was necessary to reduce the timestep to the point where we coullI k '1,l,,'

the highest mode of oscillation the droplet could support at a viven resolu tion. \Vl o'"

we doubled the resolution around the droplet, we found that the timestep hat u

decreased bv a factor of about about 2.8. This is consistent with the anal'sis wilch

says that since the period is inversely proportional to n / 2 . where n is tHI h l,,,.4.
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oscillation. Increasing the resolution of the droplet interface by a factor of 2 means

that the timestep must decrease by a factor of 23/2 2.8.

A physical mechanism for the observed decay in the n = 2 normal mode oscillation

is the existance of a resonance between the n = 2 and the n = :3 normal modes: that is

3 = ±2 ... A similar behavior in three dimensions has been analyzed by Natarajaii and

Brown [23]. In their three dimensional analysis. significant energy can be trainsferred

from one resonant mode to another within ten oscillations.

In summary, the total damping rate for the droplet oscillation calculation is roughly

18/c for the n = 2 mode. Much of the energy from this mode is transferred to higher

harmonics, as evidenced by the calculated droplet shapes, curvatures and the numerical

timestep limitations. The difference in initialization procedures alone produced an 8%iC

change in amplitude. Since the total numerical error is 5.3%, we conclude that the

majority of this error arises from the inability of the spline fit to approximate large

curvatures accurately. This error is large enough to mask other error contributions,

so that we cannot evaluate additional error terms other than to indicate that they are

apparently much smaller than that due to the spline fit.

However, despite all the problems with spline fits, we found that they provided a

good way to calculate curvature. In the search for better curvatures, we have also

tried other methods, none of which produced better results. We enumerate these

attempts both for completeness and to emphasize that better numerical approximations

for curvature are still needed to permit more accurate calculations of surface tension.

(1) We averaged the curvature between the vertices, such that

K- AK(s)ds.
Si+I --S-t-I f"'

The results were found to depend sensitively how how the iMtoeral waa aiclylk

performed. However. integration produced results wl ici wo ro no ,ttoi, tiiiiii Tit-,

pointwise Cirvatures discussed above.
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(2) We smoothed the curvatures [. with a least squares linear spline. This i lh,

worked well for one period, but the method failed on subseqlewn oscillatiII,.

(3) We used a circular arc to calculate the curvatures. A circle was placed ll-_oile

the three adjoining vertices. The radius of that circle was used as the radliis

of curvature for the interface at the center vertex of the three vertices. This

method did not work at all. The droplet interface distorted wildly within the first

oscillation.

(4) We used splines under tension. This approach introduced a free parameter which

could not be consistentlv determined.

(5) Based on the experiences of Foote [20], we tried producing an interpolant through

every other vertex and averaging the result. The motivation was that fewer points

could introduce fewer oscillations, and that averaging the interpolants could damip

the oscillations. This produced poor results. The calculation is really the average

of two calculations with half the original accuracy.

(6) \Ve considered but did not implement nonlinear splines [24]. Although these splines

produce differentiable curvatures, there is no guarantee that there exists such a

spline through a given set of points and, if such a spline does exist, there is no

guarantee that it is unique.

(7) We considered several methods for calculating an interpolant based on the Ravlei'Il

modes. The high mode oscillations could then be eliminated. None of tlie

schemes we considered gave better results than the spline interpolant. an , ,dl

introduced arbitrary parameters into the calculation. These l)aranieter, s,,i1, I,,

well-determined for a particular known shape. bit cilil i i he i,,er. ,u

general unknown shape.
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IV. Incompressible Flow about a Droplet

In this section we present some preliminary calculations of forced, asymmetric:

drop oscillations induced by flow around a droplet. These calculations include both

the effects of viscosity and surface tension. The capability of studying such flows for

highly viscous droplets in shear flows, in two and eventually in three dimensions, is the

motivation for developing the viscosity and surface tension algorithms.

The initial conditions we used specified an initially steady-state potential flow

about a periodic series of cylinders. Again, the boundary conditions on the left and

right sides are periodic, and the upper and lower boundary conditions are reflecting

walls. Initially, a perfectly circular droplet is at rest in a background flow. A physical

situation modelled by such an initialization might occur if the flow velocity were ramped

up to its final value before any significant structure could develop in the flow, and before

the droplet could pick up any substantial velocity. Basically, it is a smooth start for the

calculation. Previously we had performed calculations which began with an impulsive

start, but found that as a result there was a large amount of momentum transferred

across the droplet interface early in the calculation.

The calculations presented here model the forced fluid flow due to a fast air stream

about an initially stationary kerosene droplet. The physical parameters. given in Ta-

ble V. are appropriate for a combustor environment. A total of 309 vertices were used

to initialize the problem. with 12 vertices at the droplet interface. Figure 16 l ws

the evolution of pathlines in the internal and external flow fields through a eSe ,

timesteps. For an air velocity of 100 m/s and a droplet radius of 125 microns, ihe ,,i -

responding Reynolds number is roughly 1600. The pathliiies are detiil i% t ,i

of vertices over five timesteps. By the last frame of Fig. I6. the fluid ori.iiallv I

left of the droplet has progressed through the mesh and interactedl willh the f;l,, ,I i ,.

(next) droplet.

The first clear indication of the development of the recirc lation r e0i"1 ,

in the fourth frame of Fig. 16, which shows a pair of counter-rotating vortic,-.
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recirculation zone continues to develop throughout the calculation, although at t 1*,s

the vortex pair is not as evid,:nt due to the deletion and addition of' vertices. which

interrupts the continuity of the pathlines. By the last frame. another pair of vortiCe<

is forming near the droplet. and the original pair has been shed. The leading f,.,e of

the droplet is now quite distorted, and the droplet is about to enter the wake ,,t tile

preceding droplet.

Distortions in the face of the droplet are evident in at least the seventh frame.

These distortions occur because the curvature has increased and the streamliles of

the streamlines in the external flow are condensed by the approaching wake. The

internal velocities are small compared to the external flow rates and therefore cannot

be distinguished as pathlines. However, indication of the (small) internal recirculation

may be obtained by comparing internal vertex positions at various timeteps.

Figure 17 shows the grid at times in the calculation corresponding to those in

Fig 16. During the course of the calculation, a great deal of vertex addition and delei ion

has occured. Vertex addition, however, is most noticeable in the wake of the (roplet

and around the droplet interface. Whereas there were 300 vertices at the beginning of

the calculation, there are 450 at the end.

Figure 18 shows the pathlines for a simulation with the air speed increased to 120

rn/s. corresponding to a Reynolds number of 2000. The fluid now completely passes

through the mesh. The fluid initially near the droplet has completely passed the next

droplet by the time the calculation was terminated. The initial flow about the drilt

is similar to that shown above, except for a more pronounced flattening at i ie f',ic

of the droplet due to the higher flow speed. The wake ,dev_.lop- t in,: .. m i ,,

manner. but it now interacts strongly with the tlow at the frwai-l !-a'ti, Ii:

the droplet. Oscillations in the flow due to the wake are trainsittel to t, :The

face of the droplet and give rise to fairly large perturbation1.

As seen in Fig. 19. the computational grid needs fur:.her refitieni it atl:- T:1,

because the perturbations cannot be resolved by the limits set onji ininn '
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OV size originally chosen for the calculation. A sign that the calculation is ,nder-n,-,lvl

is that one of the crests of the surface wave is spanned by a single triangle, a situation

which allows no communication of that surface fluid with the interior of the droplet. In

order to continue the simulation, better resolution must be obtained about the droplet

surface. Another algorithm is currently being included to allow higher resolution ticar

points of large curvature at material interfaces.

V. Summary and Conclusions

This paper presented the current algorithms included in the code SPLISH. a two-

dimensional Cartesian Lagrangian treatment of incompressible flows with a dynamically

restructuring grid. The new rotator algorithm is an improvement on the one previously

used for conserving circulation. The residual algorithm ensures conservation of the area

of cells. These algorithms together with the original SPLISH framework constitute an

extremely flexible code for calculating incompressible flows in highly distorted geoie-

0.% tries or with obstacles in the flow.

New algorithms for modelling the physical effects of viscosity and surface tjnsiuli

have been added. Whereas adding the viscosity algorithm was relatively straiitt,,t-r-

ward. adding surface tension caused a number of numerical problems. Detaile1d ',,-

marks of the final algorithm selected were presented using internal capillary wav,., atl -

a Rayleigh oscillating droplet as test problems. The surface tension algorithlm. lop

on spline fits to determine curvature, allowed the droplet to oscillate many t i,,- ol

sill maintain a constant period. The numerical tests on the internal 'ap ,. i ...

indlicate that the surface tension algorithm produced a ,oljv,,t' rat, '.i,:, .- . -

ear in the mesh size. whereas the basic hydroynainic al1,ritil!1l-, ,i' : : , -

miesh size for ideal meshes. The droplet oscillation te.-_t I, ii' I,

'"ti0le ,ifficliuties with the spline fits for curvature wlin 11i wt,, ... I,-

,ilst urted.
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Previous numerical calculations of oscillating spherical droplets with SIrfas-oll-

sion and viscosity using a marker-and-cell method showed only one oscillari,,i ,,t" a

water droplet in air [201. and thus did not give any information about the subse, ,ciit

behavior of the mode amplitudes. These calculations used 2.5 times the resolution of

our most resolved calculations. Their calculated period differed from the theoretical

period by 67 compared to our 12% for a similar initial deformation. Their viscous

calculations failed to damp as quickly as required by theory which may indicate that

they suffer from a similar problem of approximating curvatures.

We presented calculations showing how a kerosene droplet deforms and sheds vor-

tices in the wake of a shear flow. Calculations of fluid flow in and around fuel droplets

are important in the study of spray combustors. The flow patterns influence droplet

breakup, evaporation and burning rates.

Acknowledgements

The authors would like to acknowledge the support of the Air Force Office of

Scientific Research. the Air Force Wright Aeronautical Laboratories. and the Naval

Research Laboratory through the Office of Naval Research. The authors wouid also

like to acknowledge the helpful suggestions of Jay Boris.

'pr

:36

U°',

;-.
v

"[ %" ,7'" '4 % " % % .' " • % - . . • ", • .v -... . . .. .. . ~ , . .



References

1. M. J. Fritts, and J. P. Boris, J. Comp. Phy-s. 31 (197-9). 17-3.

2. M. J. Fritts. "A Numerical Study of Free-Surface Waves. S:\[IC Report '>.\l-7t-

.52S- \\:\. Science .\ ppicat Ions In ternational. Inc-.. Nlarcli. 11)76i.

:3. NI. J. Frit ts. and .1. P. B~oris. in --Second International Cunferciice on NViiiilc,

Ship Hydrodynamics" i.J. V. Wehiausen and -N. Salvesen. Ed. '. 1).319. V~vri

of California, Berklev. 1977.

4. M. J. Fritts, E. W. Mliner. and 0. M. Griffin. in -Computer Miethods in 1 luid<lS

(11'. Mlorgan, C. Taylor, and C. A. Brebbia, Ed.), p. 1. Pentech Press. London.

1980.

.5. NI1. J. Fritts, "Lag-rangian Simulations of the Kelvin- Helmholtz Instability" SAIC

Report SAI-76-632-WA, Science Applications International Inc., September. 1976.

6. M. H. Emery. S. E. Bodner, J. P. Boris, D. G. Colombant, A. L. C'ooper. M. .1. F1 irts.

and M. .J. Herbst. *'Stability and Symmetry in Inertial Confinement Fusion."' NIPkL

Mlemorandum Report 4947, Naval Research Laboratory. Washington. D.C.. 1982.

7. NI. H. Emery. M. J. Fritts and R. C. Shockley, "Lagrangian Simulation of Tavlor-

Couette Flow," _NRL Mlemorandum Report 43569. Naval Research LaburatujrV.

Washington. D.C, 1981.

S. R. Gentry. 196.5. unpublished, private communication.

9. B. .J. Daly, and F. H. Harlow,.-.Numerical Fluid Dynamics Using the Part jclt-Ztuid-

Force Miethod," Los Alamos National Laboratory Report LA-3144. April. .1 M7

10. F. H. Hlarlow. "Terof the Correspondence Between Fluid Dynaiiiics iil

Particle-andl-Force Niodels." Los Alamos National Laboratory R epotiIA K

November. 1962.

1.W. P. Crowley. in -*Proceedings of the Second International (oineronce )Ii Nlmol

ical Methods in Fluid Dynamics. Lecture -Notes in Physc-.-~ IM. Hl~t. LII.'. VI

sSpriniger-Verlag, New York. 1971.

:37

%



12.A.BacilnD.Book. J. Boris. A. Cooper.'. Haim. P. Liewer. A.hI~

R. Shannv. P. Turchi. and N. \Vinsor. in --Plasma Physics and Controllil Niil-

cear Fusion Research." IAEA-CN-:3:3. p. 3567, IAEA. Vienna. 197-4.P

1:3. C. S. Peskin, J. C'omp. Ph vs. 25 (197). 220.

14. M. J. Fritts, W. P. Crowley and H. Trease. editors. The Free-Lagrang-e Wet/ioul.

Lecture -Notes in Physics Vol. 238. Springer- Verlag. New York 1S3

135. G. Strang and G. Fix. .An .Analysis of the Finite Element Miethodi (Prentice-Hll1.

Englewood Cliffs. New Jersey. 1973). pp. 77-78.

16. M. J. Fritts. D. E. Fyfe. and E. S. Oran. 1982, Numerical Simulations of Droplet

Flows with Surface Tension, Proceedings of ASMlE Wobrkshop on Two-Phase Flows.

Phoenix. Arizona.

17. M. 3. Fritts, D. E. Fyfe. and E .S. Oran, "Numerical Solution of Fuel Droplet Plowvs

Using a Lagrangian Triangular Mesh." NASA CR-168263. 1983.

18. L. D. Landau and E. M. Lifshitz, "Fluid Mechanics," pp. 230-234, Pergamiiiion

Press, New York. 19.59.

19. B. J. Daly. J. Com~p. Ph vs. 4 (1969), 97.

20. G. B. Foote. J. C'omp. Phys. 11 (1973),.5307.

* 21. C. deBoor. --A Practical Guide to Splines." pp. :316-322. Springer-Verila. New YOrk.

1978.

22. Lord Rayleigh. Proc. Roy. Soc. (London) 29 (1S79), 71.

2:1. R. Natarajan and R. Brown. Phys. Fluids 29 (1986). 2788.

2.1. M. A. Malcolm. SI.AA J.N ;umer. Anal. 14 (1977). :320.



ph.

Table I

16 x 16 grid

time last period < xr2 >

0.0000 0.3061 E-07

0.6.500E-03 0.1426E-07

* 0.1300E-02 .0013 0.2929E-07

0.197.5E-02 0.1-197E-0-

0.2GOOE-02 .001:3 0.2821E-07

0.32.50E-02 0.1563E-07

- 0.3900E-02 .0013 0.2711E-07

0.4.505E-02 0.1626E-07

0.5200E-02 .0013 0.2627E-07

0.,5850E-02 0.1677E-07

0.6.500E-02 .0013 0.2,5.56E-07

0.7150E-02 0.1718E-07

0.7775E-02 .001275 0.2493E-07

O.S425E-02 0.1757E-07

0.9075E-02 .001:3 0.2435E-07

0.9.25E-02 0.1793E-07

0.10:37E-01 .0013 0.2387E-07

uI . 100 E-01 0.1827E-07

0. 1165E-01 .001275 0.2349E-07
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Table I1

I G x 16 gTr Id(

tilnet last period X

0.0000 o. 1.500E-01

0.6250E-03 0.9974E-02

0.132.5E-02 .001325 0.1486E-01

0.1,)5E-02 0.1046E-O1

0.2600E-02 .001275 0.1463E-01

0.:327.5E-02 0.1064E-01

0.3900E-02 .0013 0.1423E-01

0.4550E-02 0.1078E-01

0.5225E-02 .001325 0.1400E-01

0.5825E-02 0.1104E-01

0.6525E-02 .001:3 0. 1392E-01

0.7150E-02 0.1131E-01

0.7775E-02 .00125 0.1378E-01

0.$4.50E-02 0.1140E-01

uiJ0.;0E-02 .001275 0.1:355E-01

.',.725E-02 0.1146E-01

I).l : 7E-01 .001:325 0.13:3.5E-01

1. 1 ()o E-O 1 u. 11.59E-01

u. I 167E-01 .001:3 0. 1:332E-01

A A.
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Table III

24 x 24 grid

time last period < x >

0.0000 0.3513E-07

0.6594E-03 0.1628E-07

0.1306E-02 .00131 0.3420E-07

0.1966E-02 0.1637E-07

Table IV

A 024 x 24 grid

time last period ,rr

0.0000 0.1500E-01

0.6,594E-03 0.1038E-01

u.12.50E-02 .00125 0.1503E-01

.931',31E-02 0.101.5E-01
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Table V

(Iensitv of kerosene 0.S2 g/cc

density of air 0.0013 g/cc

surface tension (STP) 30 dynes/cm

viscositv of kerosene 1.8 centipoise

\ iscositv of air 0.018 centipoise

air velocity 100 or 120 m/s

initial droplet velocity 0.0 m/s

droplet radius 12.5 microns
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Figure Captions

Figtre 1. A section of a triangular grid showing a) a material interface. b) a \,itt-

cell.

Figure 2. A test problem for conservation of circulation. a) The initial flow pattern.

b) The velocities after a half-time step. c) The velocities after the old rotar r

operator is applied.

Figlure 3. a) Definition of the angles 0+ and 0- for the diagonal line drawn froml j w,.

b) The angles 0'+ and 0'- formed by connecting the other quadriliateral diauai.

Figure 4. a) Vertex 4 isolated within a larger triangle before its removal. 1,) The

larger triangle remaining after deletion of vertex 4 and three associated sides and

triangles.

Figure 5. The initial grid for the internal wave test problems.

Figure 6. The period 7 as a function of mesh size for the internal gravity wave test

problem.

Figu(re 7. The period r as a function of mesh size for the internal capillary wave rest

problem.

Figure 8. A composite of frames from a calculation of an n = 2 normal i,>

droplet oscillation with 12 vertices around the droplet: = 1 cc.

(T = :30 dynes/cm. a = 0.0125 cm. Each frame is ().1 x 0.1 ciu-.

Figure 9. A composite of frames from a calculation of an o = 2 normal mode l,,tk'

oscillation with 24 vertices around the droplet. Same conditions as in Fig. 7.

Figure 10. A composite of frames from a calculation of an n = 2 normal mode lrlct

illation with 28 vertices around the droplet. Same conditions as in Fig. 7.

Figure 11. The period as a function of mesh size for the droplet oscillation prol'iotn.

Fi,'ire 12. Curvature as a function of vertex index around tio ,Irup in the 1, ,t,

,,lculation. 1) Exact solution: (2) initial spline: i31 after ,n , ,sillatikn.
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Fiui're 13. The moment < , > as a function of time for two initializatioris: i
iuitial vertices on the Rayleigh drop: (2) initial reiliig \,:rt ie on Ih,. -'.1 ,

interpolant.

lFire 14. The moment < x9 > as a function of time in the 16 x 16 calculationl.

Figure 15. The position of the rightmost vertex. x-r, as a function of time in th, I() x

16 calculation.

Figure 16. Pathlines from a calculation of air flowing past a deforming, viscous k,,ei.,

droplet. Surface tension forces are included at the material interface. loals of

pathlines are the current vertex positions and the tails are made up of the prcviis

five positions. The flow speed is 100 m/s and Re -: 1600.

Figure 17. Frames showing the triangular grid at the same times as shown for tle

pathlines in Fig. 14.

*Figure 18. Pathlines from a calculation similar to that shown in Fig. 1-t, but witlh a

flow velocity of 120 m/s and Re -z 2000.

Figiire 19. Frames showing the triangular grid at the same times as shown for the

pathlines in Fig. 16.
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Consider an inviscid shear flow on the grid shown in Fig. 2a. Triangles above

y 0 have a velocity v. = -1. and those below have a velocity c, = +1. If after :

one step the vertices have moved as in Fig. 21), conservation of circulation through

Eq. (2.18) imparts a y-component to the velocities for those triangles bordering the

shear. Although the circulation integral about each vertex in the grid is conserved, the

flow is now no longer independent of y.

To obtain a better formulation of the transformation R we must consider Eq. (2.17)

more carefully. Since Eq. (2.17) is linear in the unknowns {i }, we can obtain the change

in triangle velocities by considering the change produced by the movement of a single

vertex c. with coordinates r , and sum the resultant expression over all vertices. It is

reasonable to assume that the rotator should change only the velocities of the triangles

which have c as a vertex. As a result, conservation of circulation gives

(r j )+ i 12.r - - ' (2.19)V'i+ 1/2 .(2-r. ) il2(ri-i -r') = Vi+1/2 "(r'°-ri+l ) Vi-1/2 .r _ - °  21 )''

.

for each vertex i about c. We have used ri = r" = rc° for those vertices which are

stationary. If only vertex c moves, the cell area at vertex c is constant. so that vorticity

is conserved about vertex c as well. However, at all neighboring vertices, circulation.

not vorticitv, is conserved. Bv introducing the notation

65Vi+1/2 -Vi+l/2 -- Vi+1/2

and

TI 0,
6Src -=r c -r c,

Eq. (2.19) may" be rewritten as

Vi+ /? (r" - ri+ ) + vi-1/2 " (ri_1 - r") (vi_ 1 /2  - V+l/ 2 ) r c  (2.20)
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